""" Gradio app to compare object‑detection models: • Ultralytics YOLOv12 (n, s, m, l, x) • Ultralytics YOLOv11 (n, s, m, l, x) • Roboflow RF‑DETR (Base, Large) • Custom fine‑tuned checkpoints (.pt/.pth upload) Revision 2025‑04‑19‑e: • Gallery items now carry captions so you can see which model produced which image (and latency). • Captions display as "Model (xx ms)" or error status. • No other behaviour changed: pre‑loading, progress bar, thin semi‑transparent boxes, concise error labels. """ from __future__ import annotations import time from pathlib import Path from typing import Dict, List, Optional, Tuple import cv2 import numpy as np from PIL import Image import gradio as gr import supervision as sv from ultralytics import YOLO from rfdetr import RFDETRBase, RFDETRLarge from rfdetr.util.coco_classes import COCO_CLASSES ############################################################################### # Model registry & cache ############################################################################### YOLO_MODEL_MAP: Dict[str, str] = { # Ultralytics filenames omit the "v" "YOLOv12‑n": "yolo12n.pt", "YOLOv12‑s": "yolo12s.pt", "YOLOv12‑m": "yolo12m.pt", "YOLOv12‑l": "yolo12l.pt", "YOLOv12‑x": "yolo12x.pt", "YOLOv11‑n": "yolo11n.pt", "YOLOv11‑s": "yolo11s.pt", "YOLOv11‑m": "yolo11m.pt", "YOLOv11‑l": "yolo11l.pt", "YOLOv11‑x": "yolo11x.pt", } RFDETR_MODEL_MAP = { "RF‑DETR‑Base (29M)": "base", "RF‑DETR‑Large (128M)": "large", } ALL_MODELS = list(YOLO_MODEL_MAP.keys()) + list(RFDETR_MODEL_MAP.keys()) + [ "Custom YOLO (.pt/.pth)", "Custom RF‑DETR (.pth)", ] _loaded: Dict[str, object] = {} def load_model(choice: str, custom_file: Optional[Path] = None): if choice in _loaded: return _loaded[choice] if choice in YOLO_MODEL_MAP: model = YOLO(YOLO_MODEL_MAP[choice]) elif choice in RFDETR_MODEL_MAP: model = RFDETRBase() if RFDETR_MODEL_MAP[choice] == "base" else RFDETRLarge() elif choice.startswith("Custom YOLO"): if custom_file is None: raise RuntimeError("Upload a YOLO .pt/.pth checkpoint first.") model = YOLO(str(custom_file)) elif choice.startswith("Custom RF‑DETR"): if custom_file is None: raise RuntimeError("Upload an RF‑DETR .pth checkpoint first.") model = RFDETRBase(pretrain_weights=str(custom_file)) else: raise RuntimeError(f"Unsupported model choice: {choice}") _loaded[choice] = model return model ############################################################################### # Inference helpers ############################################################################### BOX_THICKNESS = 2 BOX_ALPHA = 0.6 box_annotator = sv.BoxAnnotator(thickness=BOX_THICKNESS) label_annotator = sv.LabelAnnotator() def _blend(base: np.ndarray, overlay: np.ndarray, alpha: float = BOX_ALPHA) -> np.ndarray: return cv2.addWeighted(overlay, alpha, base, 1 - alpha, 0) def run_single_inference(model, image: Image.Image, threshold: float) -> Tuple[Image.Image, float]: start = time.perf_counter() if isinstance(model, (RFDETRBase, RFDETRLarge)): detections = model.predict(image, threshold=threshold) label_src = COCO_CLASSES else: ul_res = model.predict(image, verbose=False)[0] detections = sv.Detections.from_ultralytics(ul_res) label_src = model.names # type: ignore runtime = time.perf_counter() - start img_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) overlay = img_bgr.copy() overlay = box_annotator.annotate(overlay, detections) overlay = label_annotator.annotate( overlay, detections, [f"{label_src[c]} {p:.2f}" for c, p in zip(detections.class_id, detections.confidence)], ) blended = _blend(img_bgr, overlay) return Image.fromarray(cv2.cvtColor(blended, cv2.COLOR_BGR2RGB)), runtime ############################################################################### # Callback with progress & captions ############################################################################### def compare_models( models: List[str], img: Image.Image, threshold: float, custom_file: Optional[Path], ): if img is None: raise gr.Error("Please upload an image first.") if img.mode != "RGB": img = img.convert("RGB") total_steps = len(models) * 2 progress = gr.Progress() detectors: Dict[str, object] = {} for i, name in enumerate(models, 1): try: detectors[name] = load_model(name, custom_file) except Exception as exc: detectors[name] = exc progress(i, total=total_steps, desc=f"Loading {name}") results: List[Tuple[Image.Image, str]] = [] legends: Dict[str, str] = {} for j, name in enumerate(models, 1): item = detectors[name] step = len(models) + j if isinstance(item, Exception): placeholder = Image.new("RGB", img.size, (40, 40, 40)) emsg = str(item) caption = f"{name} – Unavailable" if "No such file" in emsg or "not found" in emsg else f"{name} – ERROR" results.append((placeholder, caption)) legends[name] = caption progress(step, total=total_steps, desc=f"Skipped {name}") continue try: annotated, latency = run_single_inference(item, img, threshold) caption = f"{name} ({latency*1000:.1f} ms)" results.append((annotated, caption)) legends[name] = f"{latency*1000:.1f} ms" except Exception as exc: placeholder = Image.new("RGB", img.size, (40, 40, 40)) caption = f"{name} – ERROR" results.append((placeholder, caption)) legends[name] = f"ERROR: {str(exc).splitlines()[0][:120]}" progress(step, total=total_steps, desc=f"Inference {name}") yield results, legends ############################################################################### # UI ############################################################################### def build_demo(): with gr.Blocks(title="CV Model Comparison") as demo: gr.Markdown( """# 🔍 Compare Object‑Detection Models\nUpload an image, select detectors, and click **Run Inference**.\nCaptions beneath each result show which model (and latency) generated it.""" ) with gr.Row(): sel_models = gr.CheckboxGroup(ALL_MODELS, value=["YOLOv12‑n"], label="Models") conf_slider = gr.Slider(0.0, 1.0, 0.5, 0.05, label="Confidence") ckpt_file = gr.File(label="Custom checkpoint (.pt/.pth)", file_types=[".pt", ".pth"], interactive=True) img_in = gr.Image(type="pil", label="Image", sources=["upload", "webcam"]) with gr.Row(): gallery = gr.Gallery(label="Results", columns=2, height="auto") legend_out = gr.JSON(label="Latency / status by model") gr.Button("Run Inference", variant="primary").click( compare_models, [sel_models, img_in, conf_slider, ckpt_file], [gallery, legend_out] ) return demo if __name__ == "__main__": build_demo().launch()