vision-compare / app.py
wuhp's picture
Update app.py
edc92bb verified
"""
Gradio app to compare object‑detection models:
• Ultralytics YOLOv12 (n, s, m, l, x)
• Ultralytics YOLOv11 (n, s, m, l, x)
• Roboflow RF‑DETR (Base, Large)
• Custom fine‑tuned checkpoints (.pt/.pth upload)
Revision 2025‑04‑19‑e:
• Gallery items now carry captions so you can see which model produced which image (and latency).
• Captions display as "Model (xx ms)" or error status.
• No other behaviour changed: pre‑loading, progress bar, thin semi‑transparent boxes, concise error labels.
"""
from __future__ import annotations
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import cv2
import numpy as np
from PIL import Image
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from rfdetr import RFDETRBase, RFDETRLarge
from rfdetr.util.coco_classes import COCO_CLASSES
###############################################################################
# Model registry & cache
###############################################################################
YOLO_MODEL_MAP: Dict[str, str] = {
# Ultralytics filenames omit the "v"
"YOLOv12‑n": "yolo12n.pt",
"YOLOv12‑s": "yolo12s.pt",
"YOLOv12‑m": "yolo12m.pt",
"YOLOv12‑l": "yolo12l.pt",
"YOLOv12‑x": "yolo12x.pt",
"YOLOv11‑n": "yolo11n.pt",
"YOLOv11‑s": "yolo11s.pt",
"YOLOv11‑m": "yolo11m.pt",
"YOLOv11‑l": "yolo11l.pt",
"YOLOv11‑x": "yolo11x.pt",
}
RFDETR_MODEL_MAP = {
"RF‑DETR‑Base (29M)": "base",
"RF‑DETR‑Large (128M)": "large",
}
ALL_MODELS = list(YOLO_MODEL_MAP.keys()) + list(RFDETR_MODEL_MAP.keys()) + [
"Custom YOLO (.pt/.pth)",
"Custom RF‑DETR (.pth)",
]
_loaded: Dict[str, object] = {}
def load_model(choice: str, custom_file: Optional[Path] = None):
if choice in _loaded:
return _loaded[choice]
if choice in YOLO_MODEL_MAP:
model = YOLO(YOLO_MODEL_MAP[choice])
elif choice in RFDETR_MODEL_MAP:
model = RFDETRBase() if RFDETR_MODEL_MAP[choice] == "base" else RFDETRLarge()
elif choice.startswith("Custom YOLO"):
if custom_file is None:
raise RuntimeError("Upload a YOLO .pt/.pth checkpoint first.")
model = YOLO(str(custom_file))
elif choice.startswith("Custom RF‑DETR"):
if custom_file is None:
raise RuntimeError("Upload an RF‑DETR .pth checkpoint first.")
model = RFDETRBase(pretrain_weights=str(custom_file))
else:
raise RuntimeError(f"Unsupported model choice: {choice}")
_loaded[choice] = model
return model
###############################################################################
# Inference helpers
###############################################################################
BOX_THICKNESS = 2
BOX_ALPHA = 0.6
box_annotator = sv.BoxAnnotator(thickness=BOX_THICKNESS)
label_annotator = sv.LabelAnnotator()
def _blend(base: np.ndarray, overlay: np.ndarray, alpha: float = BOX_ALPHA) -> np.ndarray:
return cv2.addWeighted(overlay, alpha, base, 1 - alpha, 0)
def run_single_inference(model, image: Image.Image, threshold: float) -> Tuple[Image.Image, float]:
start = time.perf_counter()
if isinstance(model, (RFDETRBase, RFDETRLarge)):
detections = model.predict(image, threshold=threshold)
label_src = COCO_CLASSES
else:
ul_res = model.predict(image, verbose=False)[0]
detections = sv.Detections.from_ultralytics(ul_res)
label_src = model.names # type: ignore
runtime = time.perf_counter() - start
img_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
overlay = img_bgr.copy()
overlay = box_annotator.annotate(overlay, detections)
overlay = label_annotator.annotate(
overlay,
detections,
[f"{label_src[c]} {p:.2f}" for c, p in zip(detections.class_id, detections.confidence)],
)
blended = _blend(img_bgr, overlay)
return Image.fromarray(cv2.cvtColor(blended, cv2.COLOR_BGR2RGB)), runtime
###############################################################################
# Callback with progress & captions
###############################################################################
def compare_models(
models: List[str],
img: Image.Image,
threshold: float,
custom_file: Optional[Path],
):
if img is None:
raise gr.Error("Please upload an image first.")
if img.mode != "RGB":
img = img.convert("RGB")
total_steps = len(models) * 2
progress = gr.Progress()
detectors: Dict[str, object] = {}
for i, name in enumerate(models, 1):
try:
detectors[name] = load_model(name, custom_file)
except Exception as exc:
detectors[name] = exc
progress(i, total=total_steps, desc=f"Loading {name}")
results: List[Tuple[Image.Image, str]] = []
legends: Dict[str, str] = {}
for j, name in enumerate(models, 1):
item = detectors[name]
step = len(models) + j
if isinstance(item, Exception):
placeholder = Image.new("RGB", img.size, (40, 40, 40))
emsg = str(item)
caption = f"{name} – Unavailable" if "No such file" in emsg or "not found" in emsg else f"{name} – ERROR"
results.append((placeholder, caption))
legends[name] = caption
progress(step, total=total_steps, desc=f"Skipped {name}")
continue
try:
annotated, latency = run_single_inference(item, img, threshold)
caption = f"{name} ({latency*1000:.1f} ms)"
results.append((annotated, caption))
legends[name] = f"{latency*1000:.1f} ms"
except Exception as exc:
placeholder = Image.new("RGB", img.size, (40, 40, 40))
caption = f"{name} – ERROR"
results.append((placeholder, caption))
legends[name] = f"ERROR: {str(exc).splitlines()[0][:120]}"
progress(step, total=total_steps, desc=f"Inference {name}")
yield results, legends
###############################################################################
# UI
###############################################################################
def build_demo():
with gr.Blocks(title="CV Model Comparison") as demo:
gr.Markdown(
"""# 🔍 Compare Object‑Detection Models\nUpload an image, select detectors, and click **Run Inference**.\nCaptions beneath each result show which model (and latency) generated it."""
)
with gr.Row():
sel_models = gr.CheckboxGroup(ALL_MODELS, value=["YOLOv12‑n"], label="Models")
conf_slider = gr.Slider(0.0, 1.0, 0.5, 0.05, label="Confidence")
ckpt_file = gr.File(label="Custom checkpoint (.pt/.pth)", file_types=[".pt", ".pth"], interactive=True)
img_in = gr.Image(type="pil", label="Image", sources=["upload", "webcam"])
with gr.Row():
gallery = gr.Gallery(label="Results", columns=2, height="auto")
legend_out = gr.JSON(label="Latency / status by model")
gr.Button("Run Inference", variant="primary").click(
compare_models, [sel_models, img_in, conf_slider, ckpt_file], [gallery, legend_out]
)
return demo
if __name__ == "__main__":
build_demo().launch()