testtsettset2 / app.py
wuhp's picture
Update app.py
2528f91 verified
raw
history blame
54.7 kB
import os
import re
import time
import json
import io
import requests
import gradio as gr
import google.generativeai as genai
from huggingface_hub import create_repo, list_models, upload_file, constants
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status
# --- Helper functions for Hugging Face integration ---
def show_profile(profile: gr.OAuthProfile | None) -> str:
"""Displays the logged-in Hugging Face profile username."""
if profile is None:
return "*Not logged in.*"
return f"✅ Logged in as **{profile.username}**"
def list_private_models(
profile: gr.OAuthProfile | None,
oauth_token: gr.OAuthToken | None
) -> str:
"""Lists private models for the logged-in user (not used in the main workflow, but kept)."""
if profile is None or oauth_token is None:
return "Please log in to see your models."
try:
models = [
f"{m.id} ({'private' if m.private else 'public'})"
for m in list_models(author=profile.username, token=oauth_token.token)
]
return "No models found." if not models else "Models:\n\n" + "\n - ".join(models)
except Exception as e:
# Catching generic exception is acceptable for helper functions
return f"Error listing models: {e}"
def create_space_action(repo_name: str, sdk: str, profile: gr.OAuthProfile, token: gr.OAuthToken):
"""Creates a new Hugging Face Space repository."""
if not profile or not token:
raise ValueError("Hugging Face profile or token is missing.")
repo_id = f"{profile.username}/{repo_name}"
try:
create_repo(
repo_id=repo_id,
token=token.token,
exist_ok=True, # Allow creating if it already exists
repo_type="space",
space_sdk=sdk
)
url = f"https://huggingface.co/spaces/{repo_id}"
iframe = f'<iframe src="{url}" width="100%" height="500px"></iframe>'
return repo_id, iframe
except Exception as e:
raise RuntimeError(f"Failed to create Space {repo_id}: {e}")
def upload_file_to_space_action(
file_obj: io.StringIO, # Specify type hint for clarity
path_in_repo: str,
repo_id: str,
profile: gr.OAuthProfile,
token: gr.OAuthToken
) -> None:
"""Uploads a file to a Hugging Face Space repository."""
if not (profile and token and repo_id):
raise ValueError("Hugging Face profile, token, or repo_id is missing.")
try:
upload_file(
path_or_fileobj=file_obj,
path_in_repo=path_in_repo,
repo_id=repo_id,
token=token.token,
repo_type="space"
)
except Exception as e:
raise RuntimeError(f"Failed to upload `{path_in_repo}` to {repo_id}: {e}")
def _fetch_space_logs_level(repo_id: str, level: str, token: str) -> str:
"""Fetches build or run logs for a Space."""
if not repo_id or not token:
return f"Cannot fetch {level} logs: repo_id or token missing."
jwt_url = f"{constants.ENDPOINT}/api/spaces/{repo_id}/jwt"
try:
r = get_session().get(jwt_url, headers=build_hf_headers(token=token))
hf_raise_for_status(r) # Raise HTTPError for bad responses (4xx or 5xx)
jwt = r.json()["token"]
logs_url = f"https://api.hf.space/v1/{repo_id}/logs/{level}"
lines, count = [], 0
# Using stream=True is good for potentially large logs
with get_session().get(logs_url, headers=build_hf_headers(token=jwt), stream=True, timeout=30) as resp:
hf_raise_for_status(resp)
for raw in resp.iter_lines():
if count >= 200: # Limit output lines to prevent UI overload
lines.append("... truncated ...")
break
if not raw.startswith(b"data: "): # EventStream protocol expected from HF logs API
continue
payload = raw[len(b"data: "):]
try:
event = json.loads(payload.decode())
ts = event.get("timestamp", "")
txt = event.get("data", "").strip()
if txt:
lines.append(f"[{ts}] {txt}")
count += 1
except json.JSONDecodeError:
# Skip lines that aren't valid JSON events
continue
return "\n".join(lines) if lines else f"No {level} logs found."
except Exception as e:
# Catching generic exception is acceptable for helper functions
return f"Error fetching {level} logs: {e}"
def get_build_logs_action(repo_id, profile, token):
"""Action to fetch build logs with a small delay."""
if not (repo_id and profile and token):
return "⚠️ Cannot fetch build logs: log in and create a Space first."
# Small delay to allow build process to potentially start on HF side
time.sleep(5)
return _fetch_space_logs_level(repo_id, "build", token.token)
def get_container_logs_action(repo_id, profile, token):
"""Action to fetch container logs with a delay."""
if not (repo_id and profile and token):
return "⚠️ Cannot fetch container logs: log in and create a Space first."
# Longer delay to allow container to start after build completes
time.sleep(10)
return _fetch_space_logs_level(repo_id, "run", token.token)
# --- Google Gemini integration with model selection ---
def configure_gemini(api_key: str | None, model_name: str | None) -> str:
"""Configures the Gemini API and checks if the model is accessible."""
if not api_key:
return "Gemini API key is not set."
if not model_name:
return "Please select a Gemini model."
try:
genai.configure(api_key=api_key)
# Attempt a simple call to verify credentials and model availability
# This will raise an exception if the key is invalid or model not found
genai.GenerativeModel(model_name).generate_content("ping", stream=False)
return f"Gemini configured successfully with **{model_name}**."
except Exception as e:
return f"Error configuring Gemini: {e}"
def call_gemini(prompt: str, api_key: str, model_name: str) -> str:
"""Calls the Gemini API with a given prompt."""
if not api_key or not model_name:
raise ValueError("Gemini API key or model not set.")
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel(model_name)
# Using generate_content and stream=False for simplicity here
response = model.generate_content(prompt, stream=False)
return response.text or "" # Return empty string if no text
except Exception as e:
# Re-raising as RuntimeError for the workflow to catch and manage
raise RuntimeError(f"Gemini API call failed: {e}")
# --- AI workflow logic (State Machine) ---
# Define States for the workflow
STATE_IDLE = "idle"
STATE_AWAITING_REPO_NAME = "awaiting_repo_name"
STATE_CREATING_SPACE = "creating_space"
STATE_GENERATING_CODE = "generating_code"
STATE_UPLOADING_APP_PY = "uploading_app_py"
STATE_GENERATING_REQUIREMENTS = "generating_requirements"
STATE_UPLOADING_REQUIREMENTS = "uploading_requirements"
STATE_GENERATING_README = "generating_readme"
STATE_UPLOADING_README = "uploading_readme"
STATE_CHECKING_LOGS_BUILD = "checking_logs_build"
STATE_CHECKING_LOGS_RUN = "checking_logs_run"
STATE_DEBUGGING_CODE = "debugging_code"
STATE_UPLOADING_FIXED_APP_PY = "uploading_fixed_app_py"
STATE_COMPLETE = "complete"
MAX_DEBUG_ATTEMPTS = 3 # Limit the number of automatic debug attempts
def add_bot_message(history: list[dict], bot_message: str) -> list[dict]:
"""Helper to add a new assistant message to the chatbot history."""
history.append({"role": "assistant", "content": bot_message})
return history
# This is the main generator function for the workflow, triggered by the 'Send' button
def ai_workflow_chat(
message: str,
history: list[dict],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id_state: str | None,
workflow_state: str,
space_sdk: str,
preview_html: str, # Passed in to maintain its value in State
container_logs: str, # Passed in to maintain its value in State
build_logs: str, # Passed in to maintain its value in State
debug_attempts_state: int,
app_description_state: str | None,
repo_name_state: str | None,
generated_code_state: str | None,
# Absorb potential extra args passed by Gradio event listeners (e.g. old value, event data)
*args,
**kwargs
) -> tuple[
list[dict], # 0: Updated chat history
str | None, # 1: Updated repo_id
str, # 2: Updated workflow state
str, # 3: Updated iframe HTML
str, # 4: Updated container logs
str, # 5: Updated build logs
int, # 6: Updated debug attempts count
str | None, # 7: Updated app description
str | None, # 8: Updated repo name
str | None, # 9: Updated generated code (for temporary storage)
]:
"""
Generator function to handle the AI workflow state machine.
Each 'yield' pauses execution and sends values to update Gradio outputs/state.
"""
# Unpack state variables from Gradio State components passed as inputs
repo_id = repo_id_state
state = workflow_state
attempts = debug_attempts_state
app_desc = app_description_state
repo_name = repo_name_state
generated_code = generated_code_state
# Keep copies of potentially updated UI elements passed as inputs to update them later
updated_preview = preview_html
updated_build = build_logs
updated_run = container_logs
# Add the user's message to the chat history immediately
user_message_entry = {"role": "user", "content": message}
# Add username if logged in (optional, but nice)
if hf_profile and hf_profile.username:
user_message_entry["name"] = hf_profile.username
history.append(user_message_entry)
# Yield immediately to update the chat UI with the user's message
# This provides immediate feedback to the user while the AI processes
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
try:
# --- State Machine Logic based on the current 'state' variable ---
if state == STATE_IDLE:
# Check prerequisites before starting any workflow actions
if not (hf_profile and hf_token):
history = add_bot_message(history, "Workflow paused: Please log in to Hugging Face first.")
# Yield updated history and current state, then exit for this click
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
return # Exit the generator for this click
if not (gemini_api_key and gemini_model):
history = add_bot_message(history, "Workflow paused: Please enter your API key and select a Gemini model.")
# Yield updated history and current state, then exit for this click
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
return # Exit the generator for this click
# Look for specific commands in the user's message
reset_match = "reset" in message.lower()
# Capture app description AND repo name using regex
generate_match = re.search(r'generate (?:me )?(?:a|an) (.+) app called (\w+)', message, re.I)
# Capture repo name for a simple 'create space' command
create_match = re.search(r'create (?:a|an)? space called (\w+)', message, re.I)
if reset_match:
# Reset the workflow state and associated variables
history = add_bot_message(history, "Workflow reset.")
# Yield updated history and reset state variables to their initial values
yield (history, None, STATE_IDLE, "<p>No Space created yet.</p>", "", "", 0,
None, None, None)
# No return needed after yield in this generator pattern; execution for this click ends here.
elif generate_match:
# User requested generation with description and name
new_app_desc = generate_match.group(1).strip() # Capture description part
new_repo_name = generate_match.group(2).strip() # Capture name part
history = add_bot_message(history, f"Acknowledged: '{message}'. Starting workflow to create Space `{hf_profile.username}/{new_repo_name}` for a '{new_app_desc}' app.")
# Update state variables for the next step (creation)
state = STATE_CREATING_SPACE
repo_name = new_repo_name
app_desc = new_app_desc
# Yield updated history and state variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
elif create_match:
# User requested simple space creation with a name
new_repo_name = create_match.group(1).strip()
history = add_bot_message(history, f"Acknowledged: '{message}'. Starting workflow to create Space `{hf_profile.username}/{new_repo_name}`.")
# Update state variables for the next step (creation)
state = STATE_CREATING_SPACE
repo_name = new_repo_name
# Yield updated history and state variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
elif "create" in message.lower() and not repo_id:
# User wants to create but didn't specify a name yet
history = add_bot_message(history, "Okay, what should the Space be called? (e.g., `my-awesome-app`)")
state = STATE_AWAITING_REPO_NAME # Transition to the state where we wait for the name
# Yield updated history and state
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
else:
# Command not recognized in IDLE state
history = add_bot_message(history, "Command not recognized. Try 'generate me a gradio app called myapp', or 'reset'.")
# Yield updated history and current state
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
elif state == STATE_AWAITING_REPO_NAME:
# User's message is expected to be the repo name
new_repo_name = message.strip()
# Basic validation for Hugging Face repo name format
if not new_repo_name or re.search(r'[^a-zA-Z0-9_-]', new_repo_name):
history = add_bot_message(history, "Invalid name. Please provide a single word/slug for the Space name (letters, numbers, underscores, hyphens only).")
# Stay in AWAITING_REPO_NAME state and yield message
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
else:
history = add_bot_message(history, f"Using Space name `{new_repo_name}`. Creating Space `{hf_profile.username}/{new_repo_name}`...")
state = STATE_CREATING_SPACE # Transition state to creation
repo_name = new_repo_name # Store the validated repo name
# Yield updated history, state, and repo name.
# The next click will proceed from the STATE_CREATING_SPACE block.
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
# Note: Each 'elif' block below represents a distinct step in the workflow triggered
# when the 'state' variable matches its condition on a button click.
elif state == STATE_CREATING_SPACE:
# Ensure repo_name is available (it should have been set in the previous step)
if not repo_name:
history = add_bot_message(history, "Internal error: Repo name missing for creation. Resetting.")
yield (history, None, STATE_IDLE, "<p>Error creating space.</p>", "", "", 0,
None, None, None)
# No return needed
else:
try:
# Perform the action to create the Space on Hugging Face
new_repo_id, iframe_html = create_space_action(repo_name, space_sdk, hf_profile, hf_token)
updated_preview = iframe_html # Update the iframe content to show the new space
repo_id = new_repo_id # Store the official repo_id
history = add_bot_message(history, f"✅ Space `{repo_id}` created. Click 'Send' to generate and upload code.")
state = STATE_GENERATING_CODE # Transition to the next state
# Yield updated state variables and history
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error creating space: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, "<p>Error creating space.</p>", "", "", 0,
None, None, None)
# No return needed
elif state == STATE_GENERATING_CODE:
# Define the prompt for Gemini based on the app description or a default
prompt_desc = app_desc if app_desc else 'a Gradio image-blur test app with upload and slider controls'
prompt = f"""
You are an AI assistant specializing in Hugging Face Spaces using the {space_sdk} SDK.
Generate a full, single-file Python app based on:
'{prompt_desc}'
Return **only** the python code block for app.py. Do not include any extra text, explanations, or markdown outside the code block.
"""
try:
history = add_bot_message(history, "🧠 Generating `app.py` code with Gemini...")
# Yield to show message before the potentially time-consuming API call
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# Perform the Gemini API call to generate code
code = call_gemini(prompt, gemini_api_key, gemini_model)
code = code.strip()
# Clean up common markdown code block formatting if present
if code.startswith("```python"):
code = code[len("```python"):].strip()
if code.endswith("```"):
code = code[:-len("```")].strip()
if not code:
raise ValueError("Gemini returned empty code.")
history = add_bot_message(history, "✅ `app.py` code generated. Click 'Send' to upload.")
state = STATE_UPLOADING_APP_PY # Transition to the upload state
generated_code = code # Store the generated code in the state variable for the next step
# Yield updated state variables and history
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error generating code: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None)
# No return needed
elif state == STATE_UPLOADING_APP_PY:
# Retrieve the generated code from the state variable
code_to_upload = generated_code
if not code_to_upload:
history = add_bot_message(history, "Internal error: No code to upload. Resetting.")
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None)
# No return needed
else:
history = add_bot_message(history, "☁️ Uploading `app.py`...")
# Yield to show message before the upload action
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
try:
# Perform the file upload action
upload_file_to_space_action(io.StringIO(code_to_upload), "app.py", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `app.py`. Click 'Send' to generate requirements.")
state = STATE_GENERATING_REQUIREMENTS # Transition state
generated_code = None # Clear the stored code after use to free memory/state space
# Yield updated state variables and history
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error uploading app.py: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None)
# No return needed
elif state == STATE_GENERATING_REQUIREMENTS:
history = add_bot_message(history, "📄 Generating `requirements.txt`...")
# Yield to show message before generating requirements
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# Logic to determine required packages based on SDK and keywords in the app description
reqs_list = ["gradio"] if space_sdk == "gradio" else ["streamlit"]
if app_desc: # Check app_desc for keywords only if it's not None
app_desc_lower = app_desc.lower()
if "google.generativeai" in app_desc_lower or "gemini" in app_desc_lower or gemini_api_key:
reqs_list.append("google-generativeai")
if "requests" in app_desc_lower:
reqs_list.append("requests")
# Add common libraries if description suggests they might be needed
if "image" in app_desc_lower or "upload" in app_desc_lower or "blur" in app_desc_lower or "vision" in app_desc_lower:
reqs_list.append("Pillow") # Pillow is a common image processing library
if "numpy" in app_desc_lower: reqs_list.append("numpy")
if "pandas" in app_desc_lower: reqs_list.append("pandas")
# Add scikit-image and opencv if image processing is heavily implied
if any(lib in app_desc_lower for lib in ["scikit-image", "skimage", "cv2", "opencv"]):
reqs_list.extend(["scikit-image", "opencv-python"]) # Note: opencv-python for pip
# Add essential libraries regardless of description keywords
reqs_list.append("huggingface_hub") # Needed for interaction helpers if used in app
# Use dict.fromkeys to get unique items while preserving insertion order (Python 3.7+)
reqs_list = list(dict.fromkeys(reqs_list))
reqs_content = "\n".join(reqs_list) + "\n"
history = add_bot_message(history, "✅ `requirements.txt` generated. Click 'Send' to upload.")
state = STATE_UPLOADING_REQUIREMENTS # Transition state
generated_code = reqs_content # Store requirements content
# Yield updated state variables and history
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
elif state == STATE_UPLOADING_REQUIREMENTS:
# Retrieve requirements content from state variable
reqs_content_to_upload = generated_code
if not reqs_content_to_upload:
history = add_bot_message(history, "Internal error: No requirements content to upload. Resetting.")
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None)
# No return needed
else:
history = add_bot_message(history, "☁️ Uploading `requirements.txt`...")
# Yield to show message before upload
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
try:
# Perform requirements file upload
upload_file_to_space_action(io.StringIO(reqs_content_to_upload), "requirements.txt", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `requirements.txt`. Click 'Send' to generate README.")
state = STATE_GENERATING_README # Transition state
generated_code = None # Clear content after use
# Yield updated state variables and history
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error uploading requirements.txt: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None)
# No return needed
elif state == STATE_GENERATING_README:
history = add_bot_message(history, "📝 Generating `README.md`...")
# Yield message before generating README
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# Generate simple README content with Space metadata header
readme_title = repo_name if repo_name else "My Awesome Space"
readme_description = app_desc if app_desc else f"This Hugging Face Space hosts an AI-generated {space_sdk} application."
readme_content = f"""---
title: {readme_title}
emoji: 🚀
colorFrom: blue
colorTo: yellow
sdk: {space_sdk}
app_file: app.py
pinned: false
---
# {readme_title}
{readme_description}
This Space was automatically generated by an AI workflow using Google Gemini and Gradio.
""" # Added Space metadata header and slightly improved content
history = add_bot_message(history, "✅ `README.md` generated. Click 'Send' to upload.")
state = STATE_UPLOADING_README # Transition state
generated_code = readme_content # Store README content
# Yield updated state variables and history
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
elif state == STATE_UPLOADING_README:
# Retrieve README content from state variable
readme_content_to_upload = generated_code
if not readme_content_to_upload:
history = add_bot_message(history, "Internal error: No README content to upload. Resetting.")
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None)
# No return needed
else:
history = add_bot_message(history, "☁️ Uploading `README.md`...")
# Yield message before upload
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
try:
# Perform README file upload
upload_file_to_space_action(io.StringIO(readme_content_to_upload), "README.md", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `README.md`. All files uploaded. Space is now building. Click 'Send' to check build logs.")
state = STATE_CHECKING_LOGS_BUILD # Transition to checking build logs
generated_code = None # Clear content after use
# Yield updated state variables and history
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error uploading README.md: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None)
# No return needed
elif state == STATE_CHECKING_LOGS_BUILD:
history = add_bot_message(history, "🔍 Fetching build logs...")
# Yield message before fetching logs (which includes a delay)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# Fetch build logs from HF Space
build_logs_text = get_build_logs_action(repo_id, hf_profile, hf_token)
updated_build = build_logs_text # Update the logs display variable
# Simple check for common error indicators in logs (case-insensitive)
if "error" in updated_build.lower() or "exception" in updated_build.lower() or "build failed" in updated_build.lower():
history = add_bot_message(history, "⚠️ Build logs indicate potential issues. Please inspect above. Click 'Send' to check container logs (app might still start despite build warnings).")
state = STATE_CHECKING_LOGS_RUN # Transition even on build error, to see if container starts
# Yield updated state, logs, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
else:
history = add_bot_message(history, "✅ Build logs fetched. Click 'Send' to check container logs.")
state = STATE_CHECKING_LOGS_RUN # Transition to next log check
# Yield updated state, logs, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
elif state == STATE_CHECKING_LOGS_RUN:
history = add_bot_message(history, "🔍 Fetching container logs...")
# Yield message before fetching logs (includes a delay)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# Fetch container logs from HF Space
container_logs_text = get_container_logs_action(repo_id, hf_profile, hf_token)
updated_run = container_logs_text # Update the logs display variable
# Check for errors in run logs and if we have debug attempts left
if ("error" in updated_run.lower() or "exception" in updated_run.lower()) and attempts < MAX_DEBUG_ATTEMPTS:
attempts += 1 # Increment debug attempts counter
history = add_bot_message(history, f"❌ Errors detected in container logs. Attempting debug fix #{attempts}/{MAX_DEBUG_ATTEMPTS}. Click 'Send' to proceed.")
state = STATE_DEBUGGING_CODE # Transition to the debugging state
# Yield updated state, logs, attempts, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
elif ("error" in updated_run.lower() or "exception" in updated_run.lower()) and attempts >= MAX_DEBUG_ATTEMPTS:
# Max debug attempts reached
history = add_bot_message(history, f"❌ Errors detected in container logs. Max debug attempts ({MAX_DEBUG_ATTEMPTS}) reached. Please inspect logs manually or click 'reset'.")
state = STATE_COMPLETE # Workflow ends on failure after attempts
# Yield updated state, logs, attempts, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
else:
# No significant errors found in logs, assume success
history = add_bot_message(history, "✅ App appears to be running successfully! Check the iframe above. Click 'reset' to start a new project.")
state = STATE_COMPLETE # Workflow ends on success
# Yield updated state, logs, attempts, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
elif state == STATE_DEBUGGING_CODE:
history = add_bot_message(history, f"🧠 Calling Gemini to generate fix based on logs...")
# Yield message before Gemini API call
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# Construct prompt for Gemini including the container logs
debug_prompt = f"""
You are debugging a {space_sdk} Space. The goal is to fix the code in `app.py` based on the container logs provided.
Here are the container logs:
Use code with caution.
Python
{updated_run}
Generate the *complete, fixed* content for `app.py` based on these logs.
Return **only** the python code block for app.py. Do not include any extra text, explanations, or markdown outside the code block.
"""
try:
# Call Gemini to generate the corrected code
fix_code = call_gemini(debug_prompt, gemini_api_key, gemini_model)
fix_code = fix_code.strip()
# Clean up potential markdown formatting
if fix_code.startswith("```python"):
fix_code = fix_code[len("```python"):].strip()
if fix_code.endswith("```"):
fix_code = fix_code[:-len("```")].strip()
if not fix_code:
raise ValueError("Gemini returned empty fix code.")
history = add_bot_message(history, "✅ Fix code generated. Click 'Send' to upload.")
state = STATE_UPLOADING_FIXED_APP_PY # Transition to the upload state for the fix
generated_code = fix_code # Store the generated fix code
# Yield updated state, code, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error generating debug code: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None)
# No return needed
elif state == STATE_UPLOADING_FIXED_APP_PY:
# Retrieve the fixed code from the state variable
fixed_code_to_upload = generated_code
if not fixed_code_to_upload:
history = add_bot_message(history, "Internal error: No fixed code available to upload. Resetting.")
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None)
# No return needed
else:
history = add_bot_message(history, "☁️ Uploading fixed `app.py`...")
# Yield message before upload
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
try:
# Perform the upload of the fixed app.py
upload_file_to_space_action(io.StringIO(fixed_code_to_upload), "app.py", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Fixed `app.py` uploaded. Space will rebuild. Click 'Send' to check logs again.")
state = STATE_CHECKING_LOGS_RUN # Go back to checking run logs after uploading the fix
generated_code = None # Clear code after use
# Yield updated state, code, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error uploading fixed app.py: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None)
# No return needed
elif state == STATE_COMPLETE:
# If in the complete state, the workflow is finished for this project.
# Subsequent clicks just add user messages; we simply yield the current state.
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code)
# No return needed
except Exception as e:
# This catches any unexpected errors that occur within any state's logic
error_message = f"Workflow step failed unexpectedly ({state}): {e}. Click 'Send' to re-attempt this step or 'reset'."
history = add_bot_message(history, error_message)
print(f"Critical Error in state {state}: {e}") # Log the error for debugging purposes
# Yield an error state and reset essential workflow variables on critical failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None)
# No return needed after yield
# --- Build the Gradio UI ---
with gr.Blocks(title="AI-Powered HF Space App Builder") as ai_builder_tab:
# Gradio State variables - these persist their values across user interactions (clicks)
hf_profile = gr.State(None)
hf_token = gr.State(None)
gemini_key = gr.State(None)
gemini_model = gr.State("gemini-1.5-flash") # Default selected model
repo_id = gr.State(None) # Stores the ID of the created Space
workflow = gr.State(STATE_IDLE) # Stores the current state of the AI workflow
sdk_state = gr.State("gradio") # Stores the selected Space SDK (Gradio or Streamlit)
debug_attempts = gr.State(0) # Counter for how many debugging attempts have been made
app_description = gr.State(None) # Stores the user's initial description of the desired app
repo_name_state = gr.State(None) # Stores the chosen repository name for the Space
generated_code_state = gr.State(None) # Temporary storage for generated file content (app.py, reqs, README)
with gr.Row():
# Sidebar column for inputs and status displays
with gr.Column(scale=1, min_width=300):
gr.Markdown("## Hugging Face Login")
login_status = gr.Markdown("*Not logged in.*")
# Hugging Face Login Button
login_btn = gr.LoginButton(variant="huggingface")
# Initial load event to check login status (if cached)
ai_builder_tab.load(show_profile, outputs=login_status)
# Update status display when login button reports success
login_btn.click(show_profile, outputs=login_status)
gr.Markdown("## Google AI Studio API Key")
# Textbox for Gemini API key. Read from environment variable if available.
gemini_input = gr.Textbox(
label="API Key",
type="password", # Hides input for security
interactive=True,
value=os.environ.get("GOOGLE_API_KEY") # Pre-fill if GOOGLE_API_KEY env var is set
)
gemini_status = gr.Markdown("") # Display Gemini configuration status
gr.Markdown("## Gemini Model")
# Radio buttons to select the Gemini model
model_selector = gr.Radio(
choices=[
("Gemini 1.5 Flash", "gemini-1.5-flash"),
("Gemini 1.5 Pro", "gemini-1.5-pro"),
("Gemini 1.0 Pro", "gemini-1.0-pro"),
],
value="gemini-1.5-flash", # Default selection
label="Select model",
interactive=True
)
# Configure Gemini status on initial load (if API key env var is set)
ai_builder_tab.load(
configure_gemini,
inputs=[gemini_key, gemini_model],
outputs=[gemini_status]
)
gr.Markdown("## Space SDK")
# Radio buttons to select the Space SDK (Gradio or Streamlit)
sdk_selector = gr.Radio(choices=["gradio","streamlit"], value="gradio", label="Template SDK", interactive=True)
# Update the sdk_state state variable when the selection changes
sdk_selector.change(lambda s: s, inputs=sdk_selector, outputs=sdk_state)
gr.Markdown("## Workflow Status")
# Textboxes to display the current workflow state and Space ID
status_text = gr.Textbox(label="Current State", value=STATE_IDLE, interactive=False)
repo_id_text = gr.Textbox(label="Current Space ID", value="None", interactive=False)
# --- Prerequisite Status Indicator ---
# Markdown to show if prerequisites (HF login, Gemini key) are met
prereq_status = gr.Markdown("Checking prerequisites...")
# Main content area column
with gr.Column(scale=3):
# Chatbot to display the conversation and workflow messages
chatbot = gr.Chatbot(type='messages', label="AI Workflow Chat")
# Textbox for user input messages
user_input = gr.Textbox(placeholder="Type your message…", interactive=True)
# Button to send the user message and trigger the workflow step
send_btn = gr.Button("Send", interactive=False) # Starts disabled until prereqs are met
# Helper function to control send button interactivity and prerequisite status text
# This function is triggered by changes in login status and Gemini configuration
def update_send_button_state(
profile: gr.OAuthProfile | None,
token: gr.OAuthToken | None,
key: str | None,
model: str | None,
# Absorb potential extra args Gradio passes to event handlers
*args,
**kwargs
):
"""Determines if the send button should be active and updates status text."""
is_logged_in = profile is not None and token is not None
is_gemini_ready = key is not None and model is not None # Check if key and model are set
status_parts = []
if not is_logged_in:
status_parts.append("⚠️ Not logged in to Hugging Face.")
if not key:
status_parts.append("⚠️ Gemini API key not set.")
if not model:
status_parts.append("⚠️ Gemini model not selected.")
is_ready = is_logged_in and is_gemini_ready
if is_ready:
status_str = "✅ Ready to send commands."
else:
status_str = " ".join(status_parts)
if not status_str: # Fallback, should not be needed if not is_ready
status_str = "Checking prerequisites..."
# gr.update is used to dynamically change a component's properties
return gr.update(interactive=is_ready), status_str
# --- Implement Chained Events for Prerequisites ---
# Gradio's `.then()` allows chaining events: Action A happens, then Action B happens.
# 1. Login Button: When clicked and successful, update profile/token state,
# THEN update send button state based on all prereqs.
login_btn.click(
# The LoginButton outputs a tuple (OAuthProfile, OAuthToken) on success
lambda x: (x[0], x[1]),
inputs=[login_btn],
outputs=[hf_profile, hf_token] # Update these State variables
).then( # Chain the next action after state is updated
update_send_button_state,
inputs=[hf_profile, hf_token, gemini_key, gemini_model],
outputs=[send_btn, prereq_status] # Update button interactivity and status text
)
# 2. Gemini Key Input: When text changes, update key state,
# THEN configure Gemini status, THEN update send button state.
# The Textbox 'change' event passes the new value as its input
gemini_input.change(
lambda k: k, # Simple function to pass the new value to the state variable
inputs=[gemini_input],
outputs=[gemini_key] # Update gemini_key state variable
).then( # Chain configure_gemini after key state is updated
configure_gemini,
inputs=[gemini_key, gemini_model],
outputs=[gemini_status] # Update Gemini status text
).then( # Chain update_send_button_state after config status is updated
update_send_button_state,
inputs=[hf_profile, hf_token, gemini_key, gemini_model],
outputs=[send_btn, prereq_status] # Update button interactivity and status text
)
# 3. Gemini Model Selector: When selection changes, update model state,
# THEN configure Gemini status, THEN update send button state.
# The Radio 'change' event passes the new value as its input
model_selector.change(
lambda m: m, # Simple function to pass the new value to the state variable
inputs=[model_selector],
outputs=[gemini_model] # Update gemini_model state variable
).then( # Chain configure_gemini after model state is updated
configure_gemini,
inputs=[gemini_key, gemini_model],
outputs=[gemini_status] # Update Gemini status text
).then( # Chain update_send_button_state after config status is updated
update_send_button_state,
inputs=[hf_profile, hf_token, gemini_key, gemini_model],
outputs=[send_btn, prereq_status] # Update button interactivity and status text
)
# 4. Initial Load: On page load, check prereqs and update send button/status.
# This accounts for cached logins or environment variables set before launch.
ai_builder_tab.load(
update_send_button_state,
inputs=[hf_profile, hf_token, gemini_key, gemini_model],
outputs=[send_btn, prereq_status] # Update button interactivity and status text
)
# UI elements to display the Space preview iframe and build/run logs
iframe = gr.HTML("<p>No Space created yet.</p>") # HTML element for the Space iframe
# Textboxes for logs, interactive=False means user can't type here
build_txt = gr.Textbox(label="Build Logs", lines=10, interactive=False, value="", max_lines=20) # Set max_lines for scrollability
run_txt = gr.Textbox(label="Container Logs", lines=10, interactive=False, value="", max_lines=20) # Set max_lines for scrollability
# The main event handler for the Send button
# This .click() event triggers the ai_workflow_chat generator function
send_btn.click(
ai_workflow_chat, # The generator function to run
# Inputs are read from UI components and State variables
inputs=[
user_input, chatbot, # UI inputs (message, current chat history)
hf_profile, hf_token, # HF State variables
gemini_key, gemini_model, # Gemini State variables
repo_id, workflow, sdk_state, # Workflow State variables
iframe, run_txt, build_txt, # UI outputs whose current values are needed by the generator
debug_attempts, app_description, repo_name_state, generated_code_state # Other State variables
],
# Outputs are updated by the values yielded from the generator
outputs=[
chatbot, # Update Chatbot with new messages
repo_id, workflow, # Update workflow State variables
iframe, run_txt, build_txt, # Update UI outputs
debug_attempts, app_description, repo_name_state, generated_code_state # Update other State variables
]
).success( # Chain a .success() event to run *after* the .click() handler completes without error
# Clear the user input textbox after the message is sent and processed
lambda: gr.update(value=""),
inputs=None,
outputs=user_input # Update the user input textbox
)
# Link State variables' changes to UI status displays (reactive updates)
# When the 'workflow' state variable changes, update the text in status_text
workflow.change(lambda s: s, inputs=workflow, outputs=status_text)
# When the 'repo_id' state variable changes, update the text in repo_id_text
repo_id.change(lambda r: r if r else "None", inputs=repo_id, outputs=repo_id_text)
# Add an initial welcome message to the chatbot when the UI loads
def greet():
return [{"role": "assistant", "content": "Welcome! Please log in to Hugging Face and provide your Google AI Studio API key to start building Spaces. Once ready, type 'generate me a gradio app called myapp' or 'create' to begin."}]
ai_builder_tab.load(greet, outputs=chatbot)
if __name__ == "__main__":
# Optional: Configure retries for huggingface_hub requests to make them more robust
# from requests.adapters import HTTPAdapter
# from urllib3.util.retry import Retry
# retry_strategy = Retry(total=5, backoff_factor=1, status_forcelist=[429, 500, 502, 503, 504]) # Define retry strategy for specific HTTP codes
# adapter = HTTPAdapter(max_retries=retry_strategy)
# session = get_session() # Get the session object used internally by huggingface_hub
# session.mount("http://", adapter)
# session.mount("https://", adapter)
# Optional: Configure Gradio settings using environment variables
# Set max upload size (e.g., 100MB) for files like app.py
os.environ["GRADIO_MAX_FILE_SIZE"] = "100MB"
# Optional: Set a local temporary directory for Gradio uploads
os.environ["GRADIO_TEMP_DIR"] = "./tmp"
os.makedirs(os.environ["GRADIO_TEMP_DIR"], exist_ok=True) # Ensure the directory exists
# Launch the Gradio UI
ai_builder_tab.launch()