testtsettset / app.py
wuhp's picture
Update app.py
b8c1a3d verified
raw
history blame
95.4 kB
import os
import re
import time
import json
import io
import requests
import logging
from typing import List, Dict, Any, Tuple, Optional, Literal, Generator
import gradio as gr
import google.generativeai as genai
from google.generativeai import types # Import types for configuration and tools
from huggingface_hub import create_repo, list_models, upload_file, constants
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
# --- Configure Logging ---
# Replace print() statements with logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# You could add a file handler here for persistent logs if needed, but console is fine for Spaces
# --- Configure Hugging Face API Retries ---
# Added retry strategy to make HF API calls more robust to transient errors
retry_strategy = Retry(total=5, backoff_factor=1, status_forcelist=[429, 500, 502, 503, 504]) # Define retry strategy for specific HTTP codes
adapter = HTTPAdapter(max_retries=retry_strategy)
session = get_session() # Get the session object used internally by huggingface_hub
session.mount("http://", adapter)
session.mount("https://", adapter)
# --- Define Gemini Model Information ---
GEMINI_MODELS = {
"gemini-1.5-flash": ("Gemini 1.5 Flash", "Fast and versatile performance across a diverse variety of tasks."),
"gemini-1.5-pro": ("Gemini 1.5 Pro", "Complex reasoning tasks requiring more intelligence."),
"gemini-1.5-flash-8b": ("Gemini 1.5 Flash 8B", "High volume and lower intelligence tasks."),
"gemini-2.0-flash": ("Gemini 2.0 Flash", "Next generation features, speed, thinking, realtime streaming, and multimodal generation."),
"gemini-2.0-flash-lite": ("Gemini 2.0 Flash-Lite", "Cost efficiency and low latency."),
# Note: Preview models might have shorter lifespans or different capabilities. Uncomment if you want to include them.
# "gemini-2.5-flash-preview-04-17": ("Gemini 2.5 Flash Preview (04-17)", "Adaptive thinking, cost efficiency."),
# "gemini-2.5-pro-preview-03-25": ("Gemini 2.5 Pro Preview (03-25)", "Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more."),
}
# Create the list of choices for the Gradio Radio component
GEMINI_MODEL_CHOICES = [(display_name, internal_name) for internal_name, (display_name, description) in GEMINI_MODELS.items()]
DEFAULT_GEMINI_MODEL = "gemini-1.5-flash"
# --- Helper functions for Hugging Face integration ---
def show_profile(profile: gr.OAuthProfile | None) -> str:
"""Displays the logged-in Hugging Face profile username."""
if profile is None:
return "*Not logged in.*"
return f"✅ Logged in as **{profile.username}**"
# list_private_models function is not used in the main workflow, kept as is.
def list_private_models(
profile: gr.OAuthProfile | None,
oauth_token: gr.OAuthToken | None
) -> str:
"""Lists private models for the logged-in user (not used in the main workflow, but kept)."""
if profile is None or oauth_token is None:
return "Please log in to see your models."
try:
models = [
f"{m.id} ({'private' if m.private else 'public'})"
for m in list_models(author=profile.username, token=oauth_token.token)
]
return "No models found." if not models else "Models:\n\n" + "\n - ".join(models)
except Exception as e:
logging.error(f"Error listing models: {e}")
return f"Error listing models: {e}"
def create_space_action(repo_name: str, sdk: str, profile: gr.OAuthProfile, token: gr.OAuthToken) -> Tuple[str, str]:
"""Creates a new Hugging Face Space repository."""
if not profile or not token:
# This should ideally not happen if button logic is correct, but kept as safeguard
raise ValueError("Hugging Face profile or token is missing.")
repo_id = f"{profile.username}/{repo_name}"
try:
logging.info(f"Attempting to create Space: {repo_id} with SDK: {sdk}")
create_repo(
repo_id=repo_id,
token=token.token,
exist_ok=True, # Allow creating if it already exists
repo_type="space",
space_sdk=sdk
)
url = f"https://huggingface.co/spaces/{repo_id}"
iframe = f'<iframe src="{url}" width="100%" height="500px"></iframe>'
logging.info(f"Successfully created/verified Space: {repo_id}")
return repo_id, iframe
except Exception as e:
logging.error(f"Failed to create Space {repo_id}: {e}")
# Catch specific HTTP errors from huggingface_hub if possible
if isinstance(e, requests.exceptions.HTTPError):
raise RuntimeError(f"HF API Error creating Space `{repo_id}`: {e.response.status_code} {e.response.reason}") from e
raise RuntimeError(f"Failed to create Space `{repo_id}`: {e}") from e # Re-raise as RuntimeError
def upload_file_to_space_action(
file_obj: io.StringIO, # Specify type hint for clarity
path_in_repo: str,
repo_id: str,
profile: gr.OAuthProfile,
token: gr.OAuthToken
) -> None:
"""Uploads a file to a Hugging Face Space repository."""
if not (profile and token and repo_id):
raise ValueError("Hugging Face profile, token, or repo_id is missing.")
try:
logging.info(f"Attempting to upload file: {path_in_repo} to Space: {repo_id}")
upload_file(
path_or_fileobj=file_obj,
path_in_repo=path_in_repo,
repo_id=repo_id,
token=token.token,
repo_type="space"
)
logging.info(f"Successfully uploaded file: {path_in_repo} to Space: {repo_id}")
except Exception as e:
logging.error(f"Failed to upload {path_in_repo} to {repo_id}: {e}")
if isinstance(e, requests.exceptions.HTTPError):
raise RuntimeError(f"HF API Error uploading {path_in_repo} to `{repo_id}`: {e.response.status_code} {e.response.reason}") from e
raise RuntimeError(f"Failed to upload `{path_in_repo}` to `{repo_id}`: {e}") from e
def _fetch_space_logs_level(repo_id: str, level: str, token: str) -> str:
"""Fetches build or run logs for a Space."""
if not repo_id or not token:
logging.warning(f"Cannot fetch {level} logs: repo_id or token missing.")
return f"Cannot fetch {level} logs: log in and create a Space first."
jwt_url = f"{constants.ENDPOINT}/api/spaces/{repo_id}/jwt"
try:
logging.info(f"Attempting to fetch {level} logs for Space: {repo_id}")
r = get_session().get(jwt_url, headers=build_hf_headers(token=token), timeout=10) # Added timeout
hf_raise_for_status(r) # Raise HTTPError for bad responses (4xx or 5xx)
jwt = r.json()["token"]
logs_url = f"https://api.hf.space/v1/{repo_id}/logs/{level}"
lines, count = [], 0
# Using stream=True is good for potentially large logs
with get_session().get(logs_url, headers=build_hf_headers(token=jwt), stream=True, timeout=30) as resp:
hf_raise_for_status(resp)
for raw in resp.iter_lines():
if count >= 200: # Limit output lines to prevent UI overload
lines.append("... truncated ...")
break
if not raw.startswith(b"data: "): # EventStream protocol expected from HF logs API
continue
payload = raw[len(b"data: "):]
try:
event = json.loads(payload.decode())
ts = event.get("timestamp", "")
txt = event.get("data", "").strip()
if txt:
lines.append(f"[{ts}] {txt}")
count += 1
except json.JSONDecodeError:
# Skip lines that aren't valid JSON events
logging.warning(f"Skipping non-JSON log line for {repo_id} ({level}): {payload.decode()}")
continue
log_output = "\n".join(lines) if lines else f"No {level} logs found."
logging.info(f"Successfully fetched {count} {level} log lines for {repo_id}")
return log_output
except Exception as e:
logging.error(f"Error fetching {level} logs for {repo_id}: {e}")
if isinstance(e, requests.exceptions.HTTPError):
return f"Error fetching {level} logs for `{repo_id}`: {e.response.status_code} {e.response.reason}"
if isinstance(e, requests.exceptions.Timeout):
return f"Timeout fetching {level} logs for `{repo_id}`. Space might be starting slowly."
return f"Error fetching {level} logs for `{repo_id}`: {e}"
def get_build_logs_action(repo_id, profile, token):
"""Action to fetch build logs with a small delay."""
if not (repo_id and profile and token):
return "⚠️ Cannot fetch build logs: log in and create a Space first."
# Small delay to allow build process to potentially start on HF side
time.sleep(5)
return _fetch_space_logs_level(repo_id, "build", token.token)
def get_container_logs_action(repo_id, profile, token):
"""Action to fetch container logs with a delay."""
if not (repo_id and profile and token):
return "⚠️ Cannot fetch container logs: log in and create a Space first."
# Longer delay to allow container to start after build completes
time.sleep(10)
return _fetch_space_logs_level(repo_id, "run", token.token)
# --- Google Gemini integration with model selection and grounding ---
def configure_gemini(api_key: str | None, model_name: str | None) -> str:
"""Configures the Gemini API and checks if the model is accessible."""
# Check for empty string "" as well as None
if not isinstance(api_key, str) or not api_key.strip():
logging.info("Gemini API key is not set.")
return "⚠️ Gemini API key is not set."
# Check if model_name is None or not a valid key in GEMINI_MODELS
if not model_name or model_name not in GEMINI_MODELS:
logging.warning(f"Invalid Gemini model selected: {model_name}")
return "⚠️ Please select a valid Gemini model."
try:
logging.info(f"Attempting to configure Gemini with model: {model_name}")
genai.configure(api_key=api_key)
# Attempt a simple call to verify credentials and model availability
# This will raise an exception if the key is invalid or model not found
genai.GenerativeModel(model_name).generate_content("ping", stream=False)
# This message indicates the API call *for configuration check* was successful
logging.info(f"Gemini configured successfully with model: {model_name}")
return f"✅ Gemini configured successfully with **{GEMINI_MODELS[model_name][0]}**."
except Exception as e:
# This message indicates the API call *for configuration check* failed
logging.error(f"Error configuring Gemini with model {model_name}: {e}")
# Catch specific Gemini errors if possible (e.g., authentication errors)
return f"❌ Error configuring Gemini: {e}"
def get_model_description(model_name: str | None) -> str:
"""Retrieves the description for a given model name."""
if model_name is None or model_name not in GEMINI_MODELS:
return "Select a model to see its description."
return GEMINI_MODELS.get(model_name, (model_name, "No description available."))[1]
def call_gemini(prompt: str, api_key: str, model_name: str, use_grounding: bool = False) -> str:
"""Calls the Gemini API with a given prompt, optionally using grounding."""
# These checks are crucial - they will raise an error *before* the API call if prereqs aren't met
if not isinstance(api_key, str) or not api_key.strip():
raise ValueError("Gemini API key is empty or invalid.")
if not model_name or model_name not in GEMINI_MODELS:
raise ValueError(f"Gemini model '{model_name}' is invalid or not selected.")
try:
logging.info(f"Calling Gemini model '{model_name}' (Grounding: {use_grounding}) with prompt (first 50 chars): '{prompt[:50]}...'")
genai.configure(api_key=api_key) # Re-configure just in case
model = genai.GenerativeModel(model_name)
tools_config = [types.Tool(google_search=types.GoogleSearch())] if use_grounding else None
response = model.generate_content(
prompt,
stream=False, # Using stream=False for simplicity in this workflow
tools=tools_config,
request_options={'timeout': 120} # Added timeout for API call
)
if response.prompt_feedback and response.prompt_feedback.block_reason:
logging.warning(f"Gemini API call blocked: {response.prompt_feedback.block_reason}")
raise RuntimeError(f"Gemini API call blocked: {response.prompt_feedback.block_reason}")
if not response.candidates:
if response.prompt_feedback and response.prompt_feedback.safety_ratings:
ratings = "; ".join([f"{r.category}: {r.probability}" for r in response.prompt_feedback.safety_ratings])
logging.warning(f"Gemini API call returned no candidates. Safety ratings: {ratings}")
raise RuntimeError(f"Gemini API call returned no candidates. Safety ratings: {ratings}")
else:
logging.warning("Gemini API call returned no candidates.")
raise RuntimeError("Gemini API call returned no candidates.")
generated_text = response.text or ""
logging.info(f"Gemini API call successful. Generated text length: {len(generated_text)}")
return generated_text
except Exception as e:
logging.error(f"Gemini API call failed: {e}")
# Re-raising as RuntimeError for the workflow to catch and manage
raise RuntimeError(f"Gemini API call failed: {e}") from e
# --- AI workflow logic (State Machine) ---
# Define States for the workflow using Literal for type safety
WorkflowState = Literal[
"idle", "awaiting_repo_name", "creating_space", "generating_code",
"uploading_app_py", "generating_requirements", "uploading_requirements",
"generating_readme", "uploading_readme", "checking_logs_build",
"checking_logs_run", "debugging_code", "uploading_fixed_app_py", "complete"
]
STATE_IDLE: WorkflowState = "idle"
STATE_AWAITING_REPO_NAME: WorkflowState = "awaiting_repo_name"
STATE_CREATING_SPACE: WorkflowState = "creating_space"
STATE_GENERATING_CODE: WorkflowState = "generating_code"
STATE_UPLOADING_APP_PY: WorkflowState = "uploading_app_py"
STATE_GENERATING_REQUIREMENTS: WorkflowState = "generating_requirements"
STATE_UPLOADING_REQUIREMENTS: WorkflowState = "uploading_requirements"
STATE_GENERATING_README: WorkflowState = "generating_readme"
STATE_UPLOADING_README: WorkflowState = "uploading_readme"
STATE_CHECKING_LOGS_BUILD: WorkflowState = "checking_logs_build"
STATE_CHECKING_LOGS_RUN: WorkflowState = "checking_logs_run"
STATE_DEBUGGING_CODE: WorkflowState = "debugging_code"
STATE_UPLOADING_FIXED_APP_PY: WorkflowState = "uploading_fixed_app_py"
STATE_COMPLETE: WorkflowState = "complete"
MAX_DEBUG_ATTEMPTS = 3 # Limit the number of automatic debug attempts
# Helper function to add a new assistant message to the chatbot history.
def add_bot_message(history: list[dict], bot_message: str) -> list[dict]:
# Make a copy to avoid modifying history in place if needed later, though generator pattern usually handles this
new_history = list(history)
new_history.append({"role": "assistant", "content": bot_message})
logging.info(f"Added bot message: {bot_message[:100]}...")
return new_history
# Add an initial welcome message to the chatbot (defined outside Blocks to be called by load chain)
def greet() -> List[Dict[str, str]]:
logging.info("Generating initial welcome message.")
return [{"role": "assistant", "content": "Welcome! Please log in to Hugging Face and provide your Google AI Studio API key to start building Spaces. Once ready, type 'generate me a gradio app called myapp' or 'create' to begin."}]
# Helper function to update send button interactivity based on prereqs
# This function has the clean signature it expects.
def check_send_button_ready(
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_key: str | None,
gemini_model: str | None,
workflow_state: WorkflowState # Also depend on workflow state
) -> gr.Button.update: # Use specific component update
"""Checks if HF login and Gemini configuration are complete and returns update for button interactivity."""
# Button should NOT be interactive when workflow is running
if workflow_state != STATE_IDLE and workflow_state != STATE_AWAITING_REPO_NAME:
logging.debug(f"check_send_button_ready: Workflow state is {workflow_state}, disabling button.")
return gr.Button.update(interactive=False)
is_logged_in = hf_profile is not None and hf_token is not None
# Use strip() to handle cases where key is just whitespace
is_gemini_ready = isinstance(gemini_key, str) and bool(gemini_key.strip()) and bool(gemini_model)
is_ready = is_logged_in and is_gemini_ready
logging.debug(f"check_send_button_ready - HF Ready: {is_logged_in}, Gemini Ready: {is_gemini_ready}, Button Ready: {is_ready}")
# Button is interactive only in IDLE or AWAITING_REPO_NAME states AND when prereqs are met
return gr.Button.update(interactive=is_ready and (workflow_state == STATE_IDLE or workflow_state == STATE_AWAITING_REPO_NAME))
# --- State Handler Functions ---
# These functions encapsulate the logic for each state.
# They take all necessary inputs from the main generator's arguments
# and return the full tuple of outputs required by the generator's yield signature.
WorkflowInputs = Tuple[
str, List[Dict[str, str]], Optional[gr.OAuthProfile], Optional[gr.OAuthToken],
Optional[str], Optional[str], Optional[str], WorkflowState, str, str, str, str,
int, Optional[str], Optional[str], Optional[str], bool
]
WorkflowOutputs = Tuple[
List[Dict[str, str]], Optional[str], WorkflowState, str, str, str,
int, Optional[str], Optional[str], Optional[str], bool, Optional[str], Optional[str]
]
def package_workflow_outputs(
history: List[Dict[str, str]],
repo_id: Optional[str],
state: WorkflowState,
updated_preview: str,
updated_run: str,
updated_build: str,
attempts: int,
app_desc: Optional[str],
repo_name: Optional[str],
generated_code: Optional[str],
use_grounding: bool,
current_gemini_key: Optional[str], # Explicitly include these
current_gemini_model: Optional[str] # Explicitly include these
) -> WorkflowOutputs:
"""Helper to package all workflow state and UI outputs into the required tuple."""
return (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
def handle_idle(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_IDLE
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args, # Catch potential extra args
**kwargs # Catch potential extra kwargs
) -> WorkflowOutputs:
"""Handles logic when in the IDLE state."""
logging.info(f"Handling STATE_IDLE with message: {message[:50]}...")
reset_match = "reset" in message.lower()
generate_match = re.search(r'generate (?:me )?(?:a|an) (.+) app called (\w+)', message, re.I)
create_match = re.search(r'create (?:a|an)? space called (\w+)', message, re.I) # Simple create command
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
if reset_match:
logging.info("Reset command received.")
history = add_bot_message(history, "Workflow reset.")
# Reset relevant states and UI outputs
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview="<p>No Space created yet.</p>", updated_run="", updated_build="",
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
elif generate_match:
logging.info("Generate command received.")
new_app_desc = generate_match.group(1).strip() # Capture description part
new_repo_name = generate_match.group(2).strip() # Capture name part
# Perform basic validation on repo name format
if not new_repo_name or re.search(r'[^a-zA-Z0-9_-]', new_repo_name) or len(new_repo_name) > 100:
logging.warning(f"Invalid repo name format received: {new_repo_name}")
history = add_bot_message(history, "Invalid name. Please provide a single word/slug for the Space name (letters, numbers, underscores, hyphens only, max 100 chars).")
# Stay in IDLE and yield message
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
history = add_bot_message(history, f"Acknowledged: '{message}'. Starting workflow to create Space `{hf_profile.username}/{new_repo_name}` for a '{new_app_desc}' app.")
logging.info(f"Transitioning to STATE_CREATING_SPACE for repo '{new_repo_name}' and description '{new_app_desc}'")
# Update state variables for the next step
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_CREATING_SPACE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=new_app_desc, repo_name=new_repo_name, generated_code=None, # Reset attempts and generated_code
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
elif create_match:
logging.info("Simple create command received.")
new_repo_name = create_match.group(1).strip()
# Perform basic validation on repo name format
if not new_repo_name or re.search(r'[^a-zA-Z0-9_-]', new_repo_name) or len(new_repo_name) > 100:
logging.warning(f"Invalid repo name format received: {new_repo_name}")
history = add_bot_message(history, "Invalid name. Please provide a single word/slug for the Space name (letters, numbers, underscores, hyphens only, max 100 chars).")
# Stay in IDLE and yield message
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
history = add_bot_message(history, f"Acknowledged: '{message}'. Starting workflow to create Space `{hf_profile.username}/{new_repo_name}`.")
logging.info(f"Transitioning to STATE_CREATING_SPACE for repo '{new_repo_name}'")
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_CREATING_SPACE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=app_description, repo_name=new_repo_name, generated_code=None, # Reset attempts and generated_code
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
elif "create" in message.lower() and not repo_id:
logging.info("Create command without name received.")
history = add_bot_message(history, "Okay, what should the Space be called? (e.g., `my-awesome-app`)")
logging.info("Transitioning to STATE_AWAITING_REPO_NAME")
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_AWAITING_REPO_NAME,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
logging.info("Command not recognized in IDLE state.")
history = add_bot_message(history, "Command not recognized. Try 'generate me a gradio app called myapp', or 'reset'.")
# Stay in IDLE state
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_awaiting_repo_name(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_AWAITING_REPO_NAME
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowOutputs:
"""Handles logic when in the AWAITING_REPO_NAME state."""
logging.info(f"Handling STATE_AWAITING_REPO_NAME with message: {message[:50]}...")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
new_repo_name = message.strip()
# Basic validation for Hugging Face repo name format
# Allow letters, numbers, hyphens, underscores, max 100 chars (HF limit check)
if not new_repo_name or re.search(r'[^a-zA-Z0-9_-]', new_repo_name) or len(new_repo_name) > 100:
logging.warning(f"Invalid repo name format received while awaiting name: {new_repo_name}")
history = add_bot_message(history, "Invalid name. Please provide a single word/slug for the Space name (letters, numbers, underscores, hyphens only, max 100 chars).")
# Stay in AWAITING_REPO_NAME state
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_AWAITING_REPO_NAME,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
history = add_bot_message(history, f"Using Space name `{new_repo_name}`. Creating Space `{hf_profile.username}/{new_repo_name}`...")
logging.info(f"Validated repo name '{new_repo_name}'. Transitioning to STATE_CREATING_SPACE.")
# Transition state to creation
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_CREATING_SPACE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=app_description, repo_name=new_repo_name, generated_code=None, # Reset attempts and generated_code
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_creating_space(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_CREATING_SPACE
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowOutputs:
"""Handles logic when in the CREATING_SPACE state."""
logging.info(f"Handling STATE_CREATING_SPACE for repo '{repo_name}'")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Ensure repo_name is available (it should have been set in the previous step)
if not repo_name:
logging.error("Internal error: Repo name missing in STATE_CREATING_SPACE. Resetting.")
history = add_bot_message(history, "Internal error: Repo name missing for creation. Resetting.")
# Reset state on error
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview="<p>Error creating space.</p>", updated_run="", updated_build="",
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
try:
new_repo_id, iframe_html = create_space_action(repo_name, space_sdk, hf_profile, hf_token)
history = add_bot_message(history, f"✅ Space `{new_repo_id}` created. Click 'Send' to generate and upload code.")
logging.info(f"Space '{new_repo_id}' created. Transitioning to STATE_GENERATING_CODE.")
# Update state variables for the next step (generation)
return package_workflow_outputs(
history=history, repo_id=new_repo_id, state=STATE_GENERATING_CODE,
updated_preview=iframe_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors raised by actions
logging.error(f"Caught RuntimeError creating space: {e}")
history = add_bot_message(history, f"❌ Error creating space: {e}. Click 'reset'.")
# Reset state on error
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview="<p>Error creating space.</p>", updated_run="", updated_build="",
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_generating_code(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_GENERATING_CODE
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> Generator[WorkflowOutputs, None, WorkflowOutputs]: # Specify return type as Generator
"""Handles logic when in the GENERATING_CODE state."""
logging.info("Handling STATE_GENERATING_CODE")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Define the prompt for Gemini based on the app description or a default
prompt_desc = app_description if app_description else f'a simple {space_sdk} app'
prompt = f"""
You are an AI assistant specializing in Hugging Face Spaces using the {space_sdk} SDK.
Generate a full, single-file Python app based on:
'{prompt_desc}'
Ensure the code is runnable as `app.py` in a Hugging Face Space using the `{space_sdk}` SDK. Include necessary imports and setup.
Return **only** the python code block for `app.py`. Do not include any extra text, explanations, or markdown outside the code block.
"""
try:
history = add_bot_message(history, f"🧠 Generating `{prompt_desc}` `{space_sdk}` app (`app.py`) code with Gemini...")
if use_grounding:
history = add_bot_message(history, "(Using Grounding with Google Search)")
# Yield message before API call to show immediate feedback
# Use package_workflow_outputs to construct the tuple
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
code = call_gemini(prompt, current_gemini_key, current_gemini_model, use_grounding=use_grounding)
code = code.strip()
# Clean up markdown code blocks
code = re.sub(r'^```python\s*', '', code, flags=re.MULTILINE).strip()
code = re.sub(r'^```\s*', '', code, flags=re.MULTILINE).strip() # Catch generic code blocks too
code = re.sub(r'\s*```$', '', code, flags=re.MULTILINE).strip()
if not code:
logging.warning("Gemini returned empty code.")
raise ValueError("Gemini returned empty code.")
history = add_bot_message(history, "✅ `app.py` code generated. Click 'Send' to upload.")
logging.info("Code generated. Transitioning to STATE_UPLOADING_APP_PY.")
# Transition state and store generated code
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_UPLOADING_APP_PY,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors from call_gemini
logging.error(f"Caught RuntimeError generating code: {e}")
history = add_bot_message(history, f"❌ Error generating code: {e}. Click 'reset'.")
# Reset state on error
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_uploading_app_py(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_UPLOADING_APP_PY
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None, # This should hold the code to upload
use_grounding: bool,
*args,
**kwargs
) -> Generator[WorkflowOutputs, None, WorkflowOutputs]: # Specify return type as Generator
"""Handles logic when in the UPLOADING_APP_PY state."""
logging.info("Handling STATE_UPLOADING_APP_PY")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Retrieve the generated code from the state variable
code_to_upload = generated_code
if not code_to_upload:
logging.error("Internal error: No code to upload in STATE_UPLOADING_APP_PY. Resetting.")
history = add_bot_message(history, "Internal error: No code to upload. Resetting.")
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
history = add_bot_message(history, "☁️ Uploading `app.py`...")
# Yield message before upload
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
try:
upload_file_to_space_action(io.StringIO(code_to_upload), "app.py", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `app.py`. Click 'Send' to generate requirements.")
logging.info("app.py uploaded. Transitioning to STATE_GENERATING_REQUIREMENTS.")
# Transition state, clear generated code after use
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_GENERATING_REQUIREMENTS,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors from upload_file_to_space_action
logging.error(f"Caught RuntimeError uploading app.py: {e}")
history = add_bot_message(history, f"❌ Error uploading `app.py`: {e}. Click 'reset'.")
# Reset state on error
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_generating_requirements(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_GENERATING_REQUIREMENTS
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> Generator[WorkflowOutputs, None, WorkflowOutputs]: # Specify return type as Generator
"""Handles logic when in the GENERATING_REQUIREMENTS state."""
logging.info("Handling STATE_GENERATING_REQUIREMENTS")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
history = add_bot_message(history, "📄 Generating `requirements.txt`...")
# Yield message before generating requirements
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# Logic to determine required packages based on SDK and keywords in the app description
reqs_list = ["gradio"] if space_sdk == "gradio" else ["streamlit"]
# Add essential libraries regardless of description keywords or grounding
essential_libs = ["google-generativeai", "huggingface_hub"]
reqs_list.extend(essential_libs)
# Add common libraries if description suggests they might be needed
if app_description:
app_desc_lower = app_description.lower()
if "requests" in app_desc_lower or "api" in app_desc_lower:
reqs_list.append("requests")
if "image" in app_desc_lower or "upload" in app_desc_lower or "blur" in app_desc_lower or "vision" in app_desc_lower or "photo" in app_desc_lower:
reqs_list.append("Pillow")
if "numpy" in app_desc_lower: reqs_list.append("numpy")
if "pandas" in app_desc_lower or "dataframe" in app_desc_lower: reqs_list.append("pandas")
if any(lib in app_desc_lower for lib in ["scikit-image", "skimage", "cv2", "opencv"]):
reqs_list.extend(["scikit-image", "opencv-python"])
if any(lib in app_desc_lower for lib in ["transformer", "llama", "mistral", "bert", "gpt2"]):
reqs_list.append("transformers")
if any(lib in app_desc_lower for lib in ["torch", "pytorch", "tensorflow", "keras"]):
reqs_list.extend(["torch", "tensorflow"]) # Consider adding specific hardware versions if needed
# Use dict.fromkeys to get unique items while preserving insertion order (Python 3.7+)
reqs_list = list(dict.fromkeys(reqs_list))
# Sort alphabetically for cleaner requirements.txt
reqs_list.sort()
reqs_content = "\n".join(reqs_list) + "\n"
history = add_bot_message(history, "✅ `requirements.txt` generated. Click 'Send' to upload.")
logging.info("requirements.txt generated. Transitioning to STATE_UPLOADING_REQUIREMENTS.")
# Transition state and store requirements content
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_UPLOADING_REQUIREMENTS,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=reqs_content,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_uploading_requirements(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_UPLOADING_REQUIREMENTS
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None, # This should hold the requirements content
use_grounding: bool,
*args,
**kwargs
) -> Generator[WorkflowOutputs, None, WorkflowOutputs]: # Specify return type as Generator
"""Handles logic when in the UPLOADING_REQUIREMENTS state."""
logging.info("Handling STATE_UPLOADING_REQUIREMENTS")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Retrieve requirements content from state variable
reqs_content_to_upload = generated_code
if not reqs_content_to_upload:
logging.error("Internal error: No requirements content to upload in STATE_UPLOADING_REQUIREMENTS. Resetting.")
history = add_bot_message(history, "Internal error: No requirements content to upload. Resetting.")
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
history = add_bot_message(history, "☁️ Uploading `requirements.txt`...")
# Yield message before upload
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
try:
# Perform requirements file upload
upload_file_to_space_action(io.StringIO(reqs_content_to_upload), "requirements.txt", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `requirements.txt`. Click 'Send' to generate README.")
logging.info("requirements.txt uploaded. Transitioning to STATE_GENERATING_README.")
# Transition state, clear generated code after use
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_GENERATING_README,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors
logging.error(f"Caught RuntimeError uploading requirements.txt: {e}")
history = add_bot_message(history, f"❌ Error uploading `requirements.txt`: {e}. Click 'reset'.")
# Yield error message and reset state on failure
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_generating_readme(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_GENERATING_README
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> Generator[WorkflowOutputs, None, WorkflowOutputs]: # Specify return type as Generator
"""Handles logic when in the GENERATING_README state."""
logging.info("Handling STATE_GENERATING_README")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
history = add_bot_message(history, "📝 Generating `README.md`...")
# Yield message before generating README
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# Generate simple README content with Space metadata header
readme_title = repo_name if repo_name else "My Awesome Space"
readme_description = app_description if app_description else f"This Hugging Face Space hosts an AI-generated {space_sdk} application."
readme_content = f"""---
title: {readme_title}
emoji: 🚀
colorFrom: blue
colorTo: yellow
sdk: {space_sdk}
app_file: app.py
pinned: false
---
# {readme_title}
{readme_description}
This Space was automatically generated by an AI workflow using Google Gemini and Gradio.
"""
history = add_bot_message(history, "✅ `README.md` generated. Click 'Send' to upload.")
logging.info("README.md generated. Transitioning to STATE_UPLOADING_README.")
# Transition state and store README content
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_UPLOADING_README,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=readme_content,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_uploading_readme(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_UPLOADING_README
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None, # This should hold the README content
use_grounding: bool,
*args,
**kwargs
) -> Generator[WorkflowOutputs, None, WorkflowOutputs]: # Specify return type as Generator
"""Handles logic when in the UPLOADING_README state."""
logging.info("Handling STATE_UPLOADING_README")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Retrieve README content from state variable
readme_content_to_upload = generated_code
if not readme_content_to_upload:
logging.error("Internal error: No README content to upload in STATE_UPLOADING_README. Resetting.")
history = add_bot_message(history, "Internal error: No README content to upload. Resetting.")
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
history = add_bot_message(history, "☁️ Uploading `README.md`...")
# Yield message before upload
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
try:
# Perform README file upload
upload_file_to_space_action(io.StringIO(readme_content_to_upload), "README.md", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `README.md`. All files uploaded. Space is now building. Click 'Send' to check build logs.")
logging.info("README.md uploaded. Transitioning to STATE_CHECKING_LOGS_BUILD.")
# Transition to checking build logs, clear content after use
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_CHECKING_LOGS_BUILD,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors
logging.error(f"Caught RuntimeError uploading README.md: {e}")
history = add_bot_message(history, f"❌ Error uploading `README.md`: {e}. Click 'reset'.")
# Yield error message and reset state on failure
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_checking_logs_build(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_CHECKING_LOGS_BUILD
space_sdk: str,
preview_html: str,
container_logs: str, # Current UI value
build_logs: str, # Current UI value
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> Generator[WorkflowOutputs, None, WorkflowOutputs]: # Specify return type as Generator
"""Handles logic when in the CHECKING_LOGS_BUILD state."""
logging.info(f"Handling STATE_CHECKING_LOGS_BUILD for repo '{repo_id}'")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
history = add_bot_message(history, "🔍 Fetching build logs...")
# Yield message before fetching logs (which includes a delay)
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# Fetch build logs from HF Space
build_logs_text = get_build_logs_action(repo_id, hf_profile, hf_token)
updated_build = build_logs_text # Update the logs display variable
# Simple check for common error indicators in logs (case-insensitive)
if "error" in updated_build.lower() or "exception" in updated_build.lower() or "build failed" in updated_build.lower():
logging.warning("Build logs indicate potential issues.")
history = add_bot_message(history, "⚠️ Build logs indicate potential issues. Please inspect above. Click 'Send' to check container logs (app might still start despite build warnings).")
state = STATE_CHECKING_LOGS_RUN # Transition even on build error, to see if container starts
logging.info("Build logs show issues. Transitioning to STATE_CHECKING_LOGS_RUN.")
# Yield updated state, logs, and variables
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=updated_build, # Updated build logs
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
logging.info("Build logs appear clean.")
history = add_bot_message(history, "✅ Build logs fetched. Click 'Send' to check container logs.")
state = STATE_CHECKING_LOGS_RUN # Transition to next log check
logging.info("Transitioning to STATE_CHECKING_LOGS_RUN.")
# Yield updated state, logs, and variables
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=updated_build, # Updated build logs
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_checking_logs_run(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_CHECKING_LOGS_RUN
space_sdk: str,
preview_html: str,
container_logs: str, # Current UI value
build_logs: str, # Current UI value
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> Generator[WorkflowOutputs, None, WorkflowOutputs]: # Specify return type as Generator
"""Handles logic when in the CHECKING_LOGS_RUN state."""
logging.info(f"Handling STATE_CHECKING_LOGS_RUN for repo '{repo_id}'")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
history = add_bot_message(history, "🔍 Fetching container logs...")
# Yield message before fetching logs (includes a delay)
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# Fetch container logs from HF Space
container_logs_text = get_container_logs_action(repo_id, hf_profile, hf_token)
updated_run = container_logs_text # Update the logs display variable
# Check for errors in run logs and if we have debug attempts left
if ("error" in updated_run.lower() or "exception" in updated_run.lower()) and debug_attempts < MAX_DEBUG_ATTEMPTS:
new_attempts = debug_attempts + 1 # Increment debug attempts counter
logging.warning(f"Errors detected in container logs. Attempting debug fix #{new_attempts}.")
history = add_bot_message(history, f"❌ Errors detected in container logs. Attempting debug fix #{new_attempts}/{MAX_DEBUG_ATTEMPTS}. Click 'Send' to proceed.")
state = STATE_DEBUGGING_CODE # Transition to the debugging state
logging.info("Transitioning to STATE_DEBUGGING_CODE.")
# Yield updated state, logs, attempts, and variables
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=updated_run, updated_build=build_logs, # Updated run logs
attempts=new_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
elif ("error" in updated_run.lower() or "exception" in updated_run.lower()) and debug_attempts >= MAX_DEBUG_ATTEMPTS:
# Max debug attempts reached
logging.error(f"Errors detected in container logs. Max debug attempts ({MAX_DEBUG_ATTEMPTS}) reached.")
history = add_bot_message(history, f"❌ Errors detected in container logs. Max debug attempts ({MAX_DEBUG_ATTEMPTS}) reached. Please inspect logs manually or click 'reset'.")
state = STATE_COMPLETE # Workflow ends on failure after attempts
logging.info("Max debug attempts reached. Transitioning to STATE_COMPLETE.")
# Yield updated state, logs, attempts, and variables
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=updated_run, updated_build=build_logs, # Updated run logs
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
# No significant errors found in logs, assume success
logging.info("No significant errors found in run logs.")
history = add_bot_message(history, "✅ App appears to be running successfully! Check the iframe above. Click 'reset' to start a new project.")
state = STATE_COMPLETE # Workflow ends on success
logging.info("Transitioning to STATE_COMPLETE.")
# Yield updated state, logs, attempts, and variables
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=updated_run, updated_build=build_logs, # Updated run logs
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_debugging_code(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_DEBUGGING_CODE
space_sdk: str,
preview_html: str,
container_logs: str, # Current UI value (contains logs to debug from)
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> Generator[WorkflowOutputs, None, WorkflowOutputs]: # Specify return type as Generator
"""Handles logic when in the DEBUGGING_CODE state."""
logging.info(f"Handling STATE_DEBUGGING_CODE (attempt #{debug_attempts}) for repo '{repo_id}'")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
history = add_bot_message(history, f"🧠 Calling Gemini to generate fix based on logs...")
if use_grounding:
history = add_bot_message(history, "(Using Grounding with Google Search)")
# Yield message before Gemini API call
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# Construct prompt for Gemini including the container logs
debug_prompt = f"""
You are debugging a {space_sdk} Space. The goal is to fix the code in `app.py` based on the container logs provided.
Here are the container logs:
Use code with caution.
Python
{container_logs}
Generate the *complete, fixed* content for `app.py` based on these logs.
Return **only** the python code block for app.py. Do not include any extra text, explanations, or markdown outside the code block.
"""
try:
# Call Gemini to generate the corrected code, optionally using grounding
# Note: Grounding might be less effective for debugging based *only* on logs,
# but we include the option as requested.
# Use the current_gemini_key and current_gemini_model derived from state inputs
fix_code = call_gemini(debug_prompt, current_gemini_key, current_gemini_model, use_grounding=use_grounding)
fix_code = fix_code.strip()
# Clean up potential markdown formatting
fix_code = re.sub(r'^```python\s*', '', fix_code, flags=re.MULTILINE).strip()
fix_code = re.sub(r'^```\s*', '', fix_code, flags=re.MULTILINE).strip()
fix_code = re.sub(r'\s*```$', '', fix_code, flags=re.MULTILINE).strip()
if not fix_code:
logging.warning("Gemini returned empty fix code.")
raise ValueError("Gemini returned empty fix code.")
history = add_bot_message(history, "✅ Fix code generated. Click 'Send' to upload.")
logging.info("Fix code generated. Transitioning to STATE_UPLOADING_FIXED_APP_PY.")
# Transition to the upload state for the fix, store generated code
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_UPLOADING_FIXED_APP_PY,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=fix_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors
logging.error(f"Caught RuntimeError generating debug code: {e}")
history = add_bot_message(history, f"❌ Error generating debug code: {e}. Click 'reset'.")
# Yield error message and reset state on failure
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_uploading_fixed_app_py(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_UPLOADING_FIXED_APP_PY
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None, # This should hold the fixed code
use_grounding: bool,
*args,
**kwargs
) -> Generator[WorkflowOutputs, None, WorkflowOutputs]: # Specify return type as Generator
"""Handles logic when in the UPLOADING_FIXED_APP_PY state."""
logging.info(f"Handling STATE_UPLOADING_FIXED_APP_PY for repo '{repo_id}'")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Retrieve the fixed code from the state variable
fixed_code_to_upload = generated_code
if not fixed_code_to_upload:
logging.error("Internal error: No fixed code available to upload in STATE_UPLOADING_FIXED_APP_PY. Resetting.")
history = add_bot_message(history, "Internal error: No fixed code available to upload. Resetting.")
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
history = add_bot_message(history, "☁️ Uploading fixed `app.py`...")
# Yield message before upload
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
try:
# Perform the upload of the fixed app.py
upload_file_to_space_action(io.StringIO(fixed_code_to_upload), "app.py", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Fixed `app.py` uploaded. Space will rebuild. Click 'Send' to check logs again.")
state = STATE_CHECKING_LOGS_RUN # Go back to checking run logs after uploading the fix
logging.info("Fixed app.py uploaded. Transitioning to STATE_CHECKING_LOGS_RUN.")
# Transition state, clear code after use
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors
logging.error(f"Caught RuntimeError uploading fixed app.py: {e}")
history = add_bot_message(history, f"❌ Error uploading fixed `app.py`: {e}. Click 'reset'.")
# Yield error message and reset state on failure
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_complete(
message: str, # User might type something in COMPLETE state
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_COMPLETE
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowOutputs:
"""Handles logic when in the COMPLETE state."""
logging.info("Handling STATE_COMPLETE")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# If the user types something in the complete state, maybe interpret it?
# For now, we'll just stay in COMPLETE unless they type 'reset'.
if "reset" in message.lower():
logging.info("Reset command received in COMPLETE state.")
history = add_bot_message(history, "Workflow reset.")
# Reset relevant states and UI outputs
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview="<p>No Space created yet.</p>", updated_run="", updated_build="",
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
# Stay in COMPLETE state
history = add_bot_message(history, "Workflow is complete. Type 'reset' to start a new project.")
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_COMPLETE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# --- Dispatch Table ---
STATE_HANDLERS: Dict[WorkflowState, Any] = { # Use Any for type hint simplicity here
STATE_IDLE: handle_idle,
STATE_AWAITING_REPO_NAME: handle_awaiting_repo_name,
STATE_CREATING_SPACE: handle_creating_space,
STATE_GENERATING_CODE: handle_generating_code,
STATE_UPLOADING_APP_PY: handle_uploading_app_py,
STATE_GENERATING_REQUIREMENTS: handle_generating_requirements,
STATE_UPLOADING_REQUIREMENTS: handle_uploading_requirements,
STATE_GENERATING_README: handle_generating_readme,
STATE_UPLOADING_README: handle_uploading_readme,
STATE_CHECKING_LOGS_BUILD: handle_checking_logs_build,
STATE_CHECKING_LOGS_RUN: handle_checking_logs_run,
STATE_DEBUGGING_CODE: handle_debugging_code,
STATE_UPLOADING_FIXED_APP_PY: handle_uploading_fixed_app_py,
STATE_COMPLETE: handle_complete,
}
# This is the main generator function for the workflow, triggered by the 'Send' button
# Inputs and Outputs list must match exactly. The generator receives values from the inputs list.
def ai_workflow_chat(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
# Pass gemini_api_key and gemini_model as inputs - these come from the State variables
gemini_api_key_state: str | None,
gemini_model_state: str | None,
repo_id_state: str | None,
workflow_state: WorkflowState, # Use the Literal type hint
space_sdk: str,
# NOTE: UI component values are passed *by value* to the generator
preview_html: str, # Value from iframe HTML
container_logs: str, # Value from run_txt Textbox
build_logs: str, # Value from build_txt Textbox
debug_attempts_state: int,
app_description_state: str | None,
repo_name_state: str | None,
generated_code_state: str | None,
use_grounding_state: bool, # Value from use_grounding_checkbox
# Accept any extra args/kwargs passed by Gradio, common for generators
*args,
**kwargs
) -> Any: # Use Any because it yields multiple times before returning the final value (None in this case)
"""
Generator function to handle the AI workflow state machine.
Each 'yield' pauses execution and sends values to update Gradio outputs/state.
"""
# Unpack state variables and UI values from Gradio inputs
repo_id = repo_id_state
state = workflow_state
attempts = debug_attempts_state
app_desc = app_description_state
repo_name = repo_name_state
generated_code = generated_code_state
use_grounding = use_grounding_state
current_gemini_key = gemini_api_key_state
current_gemini_model = gemini_model_state
logging.info(f"ai_workflow_chat generator started. State: {state}, Message: {message[:50]}...")
# Log all inputs for debugging if needed
# logging.debug(f"ai_workflow_chat inputs: {locals()}")
# Add the user's message to the chat history immediately
user_message_entry = {"role": "user", "content": message}
if hf_profile and hf_profile.username:
user_message_entry["name"] = hf_profile.username
history.append(user_message_entry)
logging.debug("User message added to history.")
# Yield immediately to update the chat UI with the user's message
# This provides immediate feedback to the user while the AI processes
# Ensure all state variables and UI outputs are yielded back in the correct order
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=attempts, app_desc=app_desc, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
try:
# --- State Machine Logic using Dispatch Table ---
handler = STATE_HANDLERS.get(state)
if handler:
logging.debug(f"Invoking handler for state: {state}")
# Call the state handler function, passing all necessary data
# Need to pass *all* inputs to the handler function
handler_output = handler(
message=message, history=history,
hf_profile=hf_profile, hf_token=hf_token,
gemini_api_key=current_gemini_key, gemini_model=current_gemini_model, # Pass current values
repo_id=repo_id, state=state, space_sdk=space_sdk,
preview_html=preview_html, container_logs=container_logs, build_logs=build_logs, # Pass current UI values
debug_attempts=attempts, app_description=app_desc, repo_name=repo_name, generated_code=generated_code, # Pass current state values
use_grounding=use_grounding
)
# The handler might yield intermediate updates (e.g., "Generating...")
if isinstance(handler_output, Generator):
# If the handler is also a generator, yield from it
logging.debug("Handler is a generator, yielding from it.")
yield from handler_output
else:
# If the handler returned the final tuple for this step, yield it
logging.debug("Handler returned final output tuple, yielding it.")
yield handler_output
else:
logging.error(f"No handler found for state: {state}. Resetting.")
# Fallback for unknown state
history = add_bot_message(history, f"Internal error: Unknown state `{state}`. Resetting.")
yield package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview="<p>Error: Unknown state.</p>", updated_run="", updated_build="",
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except Exception as e:
# This catches any unexpected errors that occur within any state's logic
# Specific errors from helper functions (like RuntimeError) should ideally be caught in handlers,
# but this is a safety net.
error_message = f"Workflow step failed unexpectedly ({state}): {e}. Click 'Send' to re-attempt this step or 'reset'."
history = add_bot_message(history, error_message)
logging.exception(f"Critical Error caught in ai_workflow_chat generator for state {state}") # Log with traceback
# On unexpected error, reset to IDLE, but pass through the current Gemini state
yield package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs, # Keep existing UI logs
attempts=0, app_desc=None, repo_name=None, generated_code=None, # Reset project-specific states
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model # Pass through Gemini states
)
# --- Build the Gradio UI ---
with gr.Blocks(title="AI-Powered HF Space App Builder") as ai_builder_tab:
# Gradio State variables - these persist their values across user interactions (clicks)
hf_profile = gr.State(None)
hf_token = gr.State(None)
gemini_api_key_state = gr.State("") # start with no key
gemini_model_state = gr.State(DEFAULT_GEMINI_MODEL) # Default selected model
repo_id = gr.State(None) # Stores the ID of the created Space
workflow = gr.State(STATE_IDLE, live=True) # Stores the current state, live update for status_text
sdk_state = gr.State("gradio") # Stores the selected Space SDK (Gradio or Streamlit)
debug_attempts = gr.State(0) # Counter for how many debugging attempts have been made
app_description = gr.State(None) # Stores the user's initial description of the desired app
repo_name_state = gr.State(None) # Stores the chosen repository name for the Space
generated_code_state = gr.State(None) # Temporary storage for generated file content (app.py, reqs, README)
use_grounding_state = gr.State(False)
with gr.Row():
with gr.Column(scale=1, min_width=300):
gr.Markdown("## Hugging Face Login")
login_status = gr.Markdown("*Not logged in.*")
login_btn = gr.LoginButton(variant="huggingface")
gr.Markdown("## Google AI Studio / Gemini")
gemini_input = gr.Textbox(
label="Your Google AI Studio API Key",
type="password",
interactive=True,
value="",
info="Enter your own key here"
)
gemini_status = gr.Markdown("")
model_selector = gr.Radio(
choices=GEMINI_MODEL_CHOICES,
value=DEFAULT_GEMINI_MODEL,
label="Select model",
interactive=True
)
model_description_text = gr.Markdown(get_model_description(DEFAULT_GEMINI_MODEL))
use_grounding_checkbox = gr.Checkbox(
label="Enable Grounding with Google Search",
value=False,
interactive=True,
info="Use Google Search results to inform Gemini's response (may improve factuality)."
)
gr.Markdown("## Space SDK")
sdk_selector = gr.Radio(choices=["gradio","streamlit"], value="gradio", label="Template SDK", interactive=True)
gr.Markdown("## Workflow Status")
status_text = gr.Textbox(label="Current State", value=STATE_IDLE, interactive=False)
repo_id_text = gr.Textbox(label="Current Space ID", value="None", interactive=False)
with gr.Column(scale=3):
chatbot = gr.Chatbot(type='messages', label="AI Workflow Chat")
user_input = gr.Textbox(placeholder="Type your message…", interactive=True)
send_btn = gr.Button("Send", interactive=False)
iframe = gr.HTML("<p>No Space created yet.</p>")
build_txt = gr.Textbox(label="Build Logs", lines=10, interactive=False, value="", max_lines=20)
run_txt = gr.Textbox(label="Container Logs", lines=10, interactive=False, value="", max_lines=20)
# --- Define Event Handlers and Chains ---
# List of prerequisite State components for the send button logic
prerequisite_states_for_button = [
hf_profile, hf_token, gemini_api_key_state, gemini_model_state, workflow # Add workflow state
]
# Use the pattern suggested in the feedback: wire each dependency change to the same handler
for state_comp in prerequisite_states_for_button:
state_comp.change(
# Lambda function receives the new value of the changed component first,
# followed by the values of the components in 'inputs'.
# We pass ALL prerequisite states (including the one that changed) to the lambda's inputs.
# The lambda then passes the *explicitly listed* input values to the target function, check_send_button_ready.
# This avoids relying on the order of implicit args.
lambda *args, states=prerequisite_states_for_button: check_send_button_ready(
states[0], states[1], states[2], states[3], states[4] # Pass values from the 'states' list closure
),
inputs=prerequisite_states_for_button, # Pass all required states
outputs=[send_btn], # Update only the send button
)
# Add a debug log to confirm wiring (optional debug)
# logging.debug(f"Wired {state_comp.label}.change to check_send_button_ready.")
# Handle login button click: Update profile/token state -> Their .change handlers trigger check_send_button_ready
login_btn.click(
# Lambda takes the LoginButton output (profile, token tuple) which is 2 args: (profile, token)
lambda profile, token: (profile, token),
inputs=[login_btn],
outputs=[hf_profile, hf_token]
) # The .change handlers on hf_profile and hf_token will trigger check_send_button_ready
# Handle Gemini Key Input change: Update key state -> Configure Gemini status
gemini_input.change(
# Lambda receives the new value of gemini_input (1 arg) because inputs=[gemini_input]
lambda new_key_value: new_key_value,
inputs=[gemini_input], # Explicitly pass the changed component for clarity
outputs=[gemini_api_key_state] # This output updates the state
).then(
# Configure Gemini using the updated state variables
# Lambda receives (prev_output, api_key_val_from_state, model_name_val_from_state)
# The prev_output is the new key value from the previous step's output (gemini_api_key_state)
# We use the explicit inputs instead of prev_output for robustness.
lambda prev_output, api_key_val_from_state, model_name_val_from_state: configure_gemini(api_key_val_from_state, model_name_val_from_state),
inputs=[gemini_api_key_state, gemini_model_state], # Explicitly pass the required states
outputs=[gemini_status] # Update Gemini status display.
) # The gemini_api_key_state.change handler (wired in the loop above) handles button updates.
# Handle Gemini Model Selector change: Update model state -> Update description -> Configure Gemini status
model_selector.change(
# Lambda receives the new value of model_selector (1 arg) because inputs=[model_selector]
lambda new_model_name: new_model_name,
inputs=[model_selector], # Explicitly pass the changed component for clarity
outputs=[gemini_model_state] # This output updates the state
).then(
# Update the model description display
# Lambda receives (prev_output, model_name_val_from_state)
# The prev_output is the new model name from the previous step's output (gemini_model_state)
# We use the explicit inputs instead of prev_output for robustness.
lambda prev_output, model_name_val_from_state: get_model_description(model_name_val_from_state),
inputs=[gemini_model_state], # Get the new state value
outputs=[model_description_text] # Update description UI.
).then(
# Configure Gemini using the updated state variables
# Lambda receives (prev_output, api_key_val_from_state, model_name_val_from_state)
# The prev_output is the description text from the previous step.
# We use the explicit inputs instead of prev_output for robustness.
lambda prev_output, api_key_val_from_state, model_name_val_from_state: configure_gemini(api_key_val_from_state, model_name_val_from_state),
inputs=[gemini_api_key_state, gemini_model_state], # Explicitly pass the required states
outputs=[gemini_status] # Update Gemini status display.
) # The gemini_model_state.change handler (wired in the loop above) handles button updates.
# Handle Grounding checkbox change: update grounding state
use_grounding_checkbox.change(
lambda v: v, inputs=[use_grounding_checkbox], outputs=[use_grounding_state] # Use lists for inputs/outputs
)
# Handle SDK selector change: update sdk state
sdk_selector.change(
lambda s: s, inputs=[sdk_selector], outputs=[sdk_state] # Use lists for inputs/outputs
)
# Link Workflow State variable change to UI status display
workflow.change(
lambda new_state_value: new_state_value,
inputs=[workflow], # Use lists for inputs
outputs=[status_text] # Use lists for outputs
)
# Link Repo ID State variable change to UI status display
repo_id.change(
lambda new_repo_id_value: new_repo_id_value if new_repo_id_value else "None",
inputs=[repo_id], # Use lists for inputs
outputs=[repo_id_text] # Use lists for outputs
)
# The main event handler for the Send button (generator)
# This .click() event triggers the ai_workflow_chat generator function
# Inputs are read from UI components AND State variables
# Outputs are updated by the values yielded from the generator
# Ensure inputs and outputs match the ai_workflow_chat signature and yield tuple EXACTLY.
# This call is direct, not in a .then() chain, so it does NOT receive a prev_output arg.
# It receives args only from the inputs list.
send_btn_inputs = [
user_input, chatbot, # UI component inputs (message, current chat history)
hf_profile, hf_token, # HF State variables
gemini_api_key_state, gemini_model_state, # Gemini State variables
repo_id, workflow, sdk_state, # Workflow State variables
iframe, run_txt, build_txt, # UI component inputs (current values)
debug_attempts, app_description, repo_name_state, generated_code_state, # Other State variables
use_grounding_state # Grounding state input
]
send_btn_outputs = [
chatbot, # Updates Chatbot
repo_id, workflow, # Updates State variables (repo_id, workflow)
iframe, run_txt, build_txt, # Updates UI components (iframe, logs)
debug_attempts, app_description, repo_name_state, generated_code_state, # Updates other State variables
use_grounding_state, # Updates Grounding state
gemini_api_key_state, gemini_model_state # Updates Gemini State variables - these are passed through the generator
]
send_btn.click(
ai_workflow_chat,
inputs=send_btn_inputs,
outputs=send_btn_outputs
).success( # Chain a .success() event to run *after* the .click() handler completes without error
# Clear the user input textbox after the message is sent and processed
lambda: gr.Textbox.update(value=""), # Use specific component update
inputs=None,
outputs=[user_input] # Use lists for outputs
)
# --- Initial Load Event Chain ---
# This chain runs once when the app loads
ai_builder_tab.load(
# Action 1: Show profile (loads cached login if available)
# Lambda receives args corresponding to load's inputs. Load has no explicit inputs here.
# However, Gradio *does* pass the initial values of all components/states defined *before* the load event.
# The most robust way is to pass the specific state needed.
lambda initial_profile: show_profile(initial_profile),
inputs=[hf_profile], # Pass the initial profile state value
outputs=[login_status] # Updates UI. Use lists for outputs. This output becomes prev_output for the next .then()
).then(
# Action 2: Configure Gemini using initial state
# Lambda receives (prev_output, api_key_val, model_name_val)
# prev_output is the string from show_profile. Use explicit inputs.
lambda prev_output, api_key_val_from_state, model_name_val_from_state: configure_gemini(api_key_val_from_state, model_name_val_from_state),
inputs=[gemini_api_key_state, gemini_model_state], # Explicitly pass the required states
outputs=[gemini_status] # Update Gemini status display. Use lists for outputs.
).then(
# Action 3: After initial load checks, update the button state based on initial states
# Lambda receives (prev_output, *prereq_state_values)
# prev_output is the string from configure_gemini. Use explicit inputs.
lambda prev_output, p1, p2, p3, p4, p5: check_send_button_ready(p1, p2, p3, p4, p5), # Match check_send_button_ready signature
inputs=prerequisite_states_for_button, # Pass all 5 prerequisite states
outputs=[send_btn], # Update the send button. Use lists for outputs.
).then(
# Action 4: Update the model description text based on the default selected model
# Lambda receives (prev_output, model_name_val)
# prev_output is the gr.Button.update object. Use explicit input.
lambda prev_output, model_name_val_from_state: get_model_description(model_name_val_from_state),
inputs=[gemini_model_state], # Get the default model name from state
outputs=[model_description_text] # Update description UI. Use lists for outputs.
).then(
# Action 5: Add the initial welcome message to the chat history
# Lambda receives (prev_output)
# prev_output is the description text.
lambda prev_output: greet(),
inputs=None, # Greet takes no explicit inputs
outputs=[chatbot] # Updates the chatbot display. Use lists for outputs.
)
# The main workflow function and other helper functions are correctly defined OUTSIDE the gr.Blocks context
# because they operate on the *values* passed to them by Gradio event triggers, not the UI component objects themselves.
if __name__ == "__main__":
# Optional: Configure Gradio settings using environment variables
os.environ["GRADIO_MAX_FILE_SIZE"] = "100MB"
os.environ["GRADIO_TEMP_DIR"] = "./tmp"
os.makedirs(os.environ["GRADIO_TEMP_DIR"], exist_ok=True)
logging.info("Starting Gradio app...")
# Launch the Gradio UI
ai_builder_tab.launch()