testtsettset / app.py
wuhp's picture
Update app.py
1dbd40f verified
raw
history blame
68.7 kB
import os
import re
import time
import json
import io
import requests
import gradio as gr
import google.generativeai as genai
from google.generativeai import types # Import types for configuration and tools
from huggingface_hub import create_repo, list_models, upload_file, constants
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status
# Removed the debugging print that attempts to read GOOGLE_API_KEY from environment
# --- Helper functions for Hugging Face integration ---
def show_profile(profile: gr.OAuthProfile | None) -> str:
"""Displays the logged-in Hugging Face profile username."""
if profile is None:
return "*Not logged in.*"
return f"✅ Logged in as **{profile.username}**"
def list_private_models(
profile: gr.OAuthProfile | None,
oauth_token: gr.OAuthToken | None
) -> str:
"""Lists private models for the logged-in user (not used in the main workflow, but kept)."""
if profile is None or oauth_token is None:
return "Please log in to see your models."
try:
models = [
f"{m.id} ({'private' if m.private else 'public'})"
for m in list_models(author=profile.username, token=oauth_token.token)
]
return "No models found." if not models else "Models:\n\n" + "\n - ".join(models)
except Exception as e:
# Catching generic exception is acceptable for helper functions
return f"Error listing models: {e}"
def create_space_action(repo_name: str, sdk: str, profile: gr.OAuthProfile, token: gr.OAuthToken):
"""Creates a new Hugging Face Space repository."""
if not profile or not token:
raise ValueError("Hugging Face profile or token is missing.")
repo_id = f"{profile.username}/{repo_name}"
try:
create_repo(
repo_id=repo_id,
token=token.token,
exist_ok=True, # Allow creating if it already exists
repo_type="space",
space_sdk=sdk
)
url = f"https://huggingface.co/spaces/{repo_id}"
iframe = f'<iframe src="{url}" width="100%" height="500px"></iframe>'
return repo_id, iframe
except Exception as e:
raise RuntimeError(f"Failed to create Space `{repo_id}`: {e}")
def upload_file_to_space_action(
file_obj: io.StringIO, # Specify type hint for clarity
path_in_repo: str,
repo_id: str,
profile: gr.OAuthProfile,
token: gr.OAuthToken
) -> None:
"""Uploads a file to a Hugging Face Space repository."""
if not (profile and token and repo_id):
raise ValueError("Hugging Face profile, token, or repo_id is missing.")
try:
upload_file(
path_or_fileobj=file_obj,
path_in_repo=path_in_repo,
repo_id=repo_id,
token=token.token,
repo_type="space"
)
except Exception as e:
raise RuntimeError(f"Failed to upload `{path_in_repo}` to `{repo_id}`: {e}")
def _fetch_space_logs_level(repo_id: str, level: str, token: str) -> str:
"""Fetches build or run logs for a Space."""
if not repo_id or not token:
return f"Cannot fetch {level} logs: repo_id or token missing."
jwt_url = f"{constants.ENDPOINT}/api/spaces/{repo_id}/jwt"
try:
r = get_session().get(jwt_url, headers=build_hf_headers(token=token))
hf_raise_for_status(r) # Raise HTTPError for bad responses (4xx or 5xx)
jwt = r.json()["token"]
logs_url = f"https://api.hf.space/v1/{repo_id}/logs/{level}"
lines, count = [], 0
# Using stream=True is good for potentially large logs
with get_session().get(logs_url, headers=build_hf_headers(token=jwt), stream=True, timeout=30) as resp:
hf_raise_for_status(resp)
for raw in resp.iter_lines():
if count >= 200: # Limit output lines to prevent UI overload
lines.append("... truncated ...")
break
if not raw.startswith(b"data: "): # EventStream protocol expected from HF logs API
continue
payload = raw[len(b"data: "):]
try:
event = json.loads(payload.decode())
ts = event.get("timestamp", "")
txt = event.get("data", "").strip()
if txt:
lines.append(f"[{ts}] {txt}")
count += 1
except json.JSONDecodeError:
# Skip lines that aren't valid JSON events
continue
return "\n".join(lines) if lines else f"No {level} logs found."
except Exception as e:
# Catching generic exception is acceptable for helper functions
return f"Error fetching {level} logs for `{repo_id}`: {e}"
def get_build_logs_action(repo_id, profile, token):
"""Action to fetch build logs with a small delay."""
if not (repo_id and profile and token):
return "⚠️ Cannot fetch build logs: log in and create a Space first."
# Small delay to allow build process to potentially start on HF side
time.sleep(5)
return _fetch_space_logs_level(repo_id, "build", token.token)
def get_container_logs_action(repo_id, profile, token):
"""Action to fetch container logs with a delay."""
if not (repo_id and profile and token):
return "⚠️ Cannot fetch container logs: log in and create a Space first."
# Longer delay to allow container to start after build completes
time.sleep(10)
return _fetch_space_logs_level(repo_id, "run", token.token)
# --- Google Gemini integration with model selection and grounding ---
def configure_gemini(api_key: str | None, model_name: str | None) -> str:
"""Configures the Gemini API and checks if the model is accessible."""
# Check for empty string "" as well as None
if not api_key:
return "⚠️ Gemini API key is not set."
if not model_name:
return "⚠️ Please select a Gemini model."
try:
genai.configure(api_key=api_key)
# Attempt a simple call to verify credentials and model availability
# This will raise an exception if the key is invalid or model not found
genai.GenerativeModel(model_name).generate_content("ping", stream=False)
# This message indicates the API call *for configuration check* was successful
return f"✅ Gemini configured successfully with **{model_name}**."
except Exception as e:
# This message indicates the API call *for configuration check* failed
return f"❌ Error configuring Gemini: {e}"
def call_gemini(prompt: str, api_key: str, model_name: str, use_grounding: bool = False) -> str:
"""Calls the Gemini API with a given prompt, optionally using grounding."""
# This check is crucial - it will raise an error *before* the API call if prereqs aren't met
# Check for empty string "" as well as None
if not isinstance(api_key, str) or api_key == "" or not model_name:
# This error indicates a failure in the workflow logic or state propagation
# because this function should only be called when prereqs are met.
raise ValueError(f"Gemini API call prerequisites not met: api_key={api_key}, model_name={model_name}")
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel(model_name)
# Define tools for grounding if requested.
# Using genai.types.GoogleSearch() is recommended for Gemini 2.0+
# and is backwards compatible with 1.5 for retrieval.
tools_config = [types.Tool(google_search=types.GoogleSearch())] if use_grounding else None
# Using generate_content and stream=False for simplicity here
response = model.generate_content(
prompt,
stream=False,
tools=tools_config # Pass the tools configuration
)
# Check if response is blocked
if response.prompt_feedback and response.prompt_feedback.block_reason:
raise RuntimeError(f"Gemini API call blocked: {response.prompt_feedback.block_reason}")
if not response.candidates:
# Check for safety ratings if no candidates are returned but not blocked
if response.prompt_feedback and response.prompt_feedback.safety_ratings:
ratings = "; ".join([f"{r.category}: {r.probability}" for r in response.prompt_feedback.safety_ratings])
raise RuntimeError(f"Gemini API call returned no candidates. Safety ratings: {ratings}")
else:
raise RuntimeError("Gemini API call returned no candidates.")
# If response.candidates is not empty, get the text
# Using response.text is a convenient way to get text from the first candidate part
return response.text or "" # Return empty string if no text
except Exception as e:
# Re-raising as RuntimeError for the workflow to catch and manage
raise RuntimeError(f"Gemini API call failed: {e}")
# --- AI workflow logic (State Machine) ---
# Define States for the workflow
STATE_IDLE = "idle"
STATE_AWAITING_REPO_NAME = "awaiting_repo_name"
STATE_CREATING_SPACE = "creating_space"
STATE_GENERATING_CODE = "generating_code"
STATE_UPLOADING_APP_PY = "uploading_app_py"
STATE_GENERATING_REQUIREMENTS = "generating_requirements"
STATE_UPLOADING_REQUIREMENTS = "uploading_requirements"
STATE_GENERATING_README = "generating_readme"
STATE_UPLOADING_README = "uploading_readme"
STATE_CHECKING_LOGS_BUILD = "checking_logs_build"
STATE_CHECKING_LOGS_RUN = "checking_logs_run"
STATE_DEBUGGING_CODE = "debugging_code"
STATE_UPLOADING_FIXED_APP_PY = "uploading_fixed_app_py"
STATE_COMPLETE = "complete"
MAX_DEBUG_ATTEMPTS = 3 # Limit the number of automatic debug attempts
def add_bot_message(history: list[dict], bot_message: str) -> list[dict]:
"""Helper to add a new assistant message to the chatbot history."""
history.append({"role": "assistant", "content": bot_message})
return history
# Add an initial welcome message to the chatbot (defined outside Blocks to be called by load chain)
def greet():
# Updated welcome message to reflect the change in API key handling
return [{"role": "assistant", "content": "Welcome! Please log in to Hugging Face and provide your Google AI Studio API key to start building Spaces. Once ready, type 'generate me a gradio app called myapp' or 'create' to begin."}]
# Helper function to update send button interactivity based on prereqs
# MODIFIED: Signature takes exactly 4 inputs, removed *args, **kwargs
# FIXED: Return type hint corrected to gr.update
# MODIFIED: Internal logic uses bool() check for simplicity
def check_send_button_ready(hf_profile: gr.OAuthProfile | None, hf_token: gr.OAuthToken | None, gemini_key: str | None, gemini_model: str | None) -> gr.update:
"""Checks if HF login and Gemini configuration are complete and returns update for button interactivity."""
# --- START ENHANCED DEBUGGING LOGS ---
print("\n--- check_send_button_ready START ---")
print(f" Received hf_profile: Type={type(hf_profile)}, Value={'present' if hf_profile else 'None'}")
print(f" Received hf_token: Type={type(hf_token)}, Value={'present' if hf_token else 'None'}")
# For api_key, print part of the key if not None/empty for verification
api_key_display = gemini_key[:5] if isinstance(gemini_key, str) and gemini_key else ('Empty String' if isinstance(gemini_key, str) and gemini_key == "" else 'None')
print(f" Received gemini_key: Type={type(gemini_key)}, Value={api_key_display}")
print(f" Received gemini_model: Type={type(gemini_model)}, Value={gemini_model}")
# --- END ENHANCED DEBUGGING LOGS ---
is_logged_in = hf_profile is not None and hf_token is not None
# Use bool() check for simplicity - handles None and "" correctly
is_gemini_ready = bool(gemini_key) and bool(gemini_model)
# --- CONTINUED DEBUGGING LOGS ---
print(f" HF check: ({hf_profile is not None} and {hf_token is not None}) = {is_logged_in}")
print(f" Gemini check: ({bool(gemini_key)} and {bool(gemini_model)}) = {is_gemini_ready}")
print("--- END CONTINUED DEBUGGING LOGS ---")
is_ready = is_logged_in and is_gemini_ready
print(f"check_send_button_ready - HF Ready: {is_logged_in}, Gemini Ready: {is_gemini_ready}, Button Ready (boolean): {is_ready}")
print("--- check_send_button_ready END ---\n")
# FIXED: Call gr.update instead of gr.Button.update
return gr.update(interactive=is_ready)
# This is the main generator function for the workflow, triggered by the 'Send' button
# NOTE: This function MUST accept ALL state variables as inputs that it might need to modify or pass through.
# It MUST also yield/return ALL state variables in the same order they appear in the `outputs` list of the `.click()` event.
# MODIFIED: Input parameter names align with renamed states for clarity
# MODIFIED: Output tuple includes renamed gemini state variables
def ai_workflow_chat(
message: str,
history: list[dict],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
# Pass gemini_api_key and gemini_model as inputs - these come from the State variables
gemini_api_key_state: str | None,
gemini_model_state: str | None,
repo_id_state: str | None,
workflow_state: str,
space_sdk: str,
# NOTE: UI component values are passed *by value* to the generator
preview_html: str, # Value from iframe HTML
container_logs: str, # Value from run_txt Textbox
build_logs: str, # Value from build_txt Textbox
debug_attempts_state: int,
app_description_state: str | None,
repo_name_state: str | None,
generated_code_state: str | None,
use_grounding_state: bool, # Value from use_grounding_checkbox
# Absorb potential extra args passed by Gradio event listeners (e.g. old value, event data)
*args,
**kwargs
) -> tuple[
list[dict], # 0: Updated chat history (for chatbot)
str | None, # 1: Updated repo_id (for repo_id state)
str, # 2: Updated workflow state (for workflow state)
str, # 3: Updated iframe HTML (for iframe UI component)
str, # 4: Updated container logs (for run_txt UI component)
str, # 5: Updated build logs (for build_txt UI component)
int, # 6: Updated debug attempts count (for debug_attempts state)
str | None, # 7: Updated app description (for app_description state)
str | None, # 8: Updated repo name (for repo_name_state state)
str | None, # 9: Updated generated code (for generated_code_state state)
bool, # 10: Updated use_grounding_state (for use_grounding_state state)
str | None, # 11: Explicitly yield gemini_api_key_state
str | None, # 12: Explicitly yield gemini_model_state
]:
"""
Generator function to handle the AI workflow state machine.
Each 'yield' pauses execution and sends values to update Gradio outputs/state.
"""
# Unpack state variables from Gradio State components passed as inputs
repo_id = repo_id_state
state = workflow_state
attempts = debug_attempts_state
app_desc = app_description_state
repo_name = repo_name_state
generated_code = generated_code_state
use_grounding = use_grounding_state # Unpack grounding state
# Use the input parameters for Gemini key/model directly in the generator
current_gemini_key = gemini_api_key_state
current_gemini_model = gemini_model_state
# Keep copies of potentially updated UI elements passed as inputs to update them later
# These are the *current values* of the UI components as of the button click
updated_preview = preview_html
updated_build = build_logs
updated_run = container_logs
# Add the user's message to the chat history immediately
user_message_entry = {"role": "user", "content": message}
# Add username if logged in (optional, but nice)
if hf_profile and hf_profile.username:
user_message_entry["name"] = hf_profile.username
history.append(user_message_entry)
# Yield immediately to update the chat UI with the user's message
# This provides immediate feedback to the user while the AI processes
# Ensure all state variables and UI outputs are yielded back in the correct order
# Include gemini_api_key_state and gemini_model_state in the yield tuple
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model) # Explicitly pass back current state values
try:
# --- State Machine Logic based on the current 'state' variable ---
# Although button interactivity prevents reaching here without key/model,
# the checks remain as a safeguard for the workflow logic itself.
if not (hf_profile and hf_token):
history = add_bot_message(history, "Workflow paused: Please log in to Hugging Face first.")
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model) # Explicitly pass back current state values
return # Stop workflow execution for this click
# Check if API key is non-empty string and model is set
# Use the local variables derived from state inputs
if not (isinstance(current_gemini_key, str) and current_gemini_key != "" and current_gemini_model):
history = add_bot_message(history, "Workflow cannot start: Please ensure your Gemini API key is entered and a model is selected.")
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model) # Explicitly pass back current state values
return # Stop workflow execution for this click
if state == STATE_IDLE:
# Look for specific commands in the user's message
reset_match = "reset" in message.lower()
# Capture app description AND repo name using regex
generate_match = re.search(r'generate (?:me )?(?:a|an) (.+) app called (\w+)', message, re.I)
# Capture repo name for a simple 'create space' command
create_match = re.search(r'create (?:a|an)? space called (\w+)', message, re.I)
if reset_match:
# Reset the workflow state and associated variables
history = add_bot_message(history, "Workflow reset.")
# Yield updated history and reset state variables to their initial values
# Also reset UI outputs to their initial state
# gemini_key and gemini_model are passed back with their *current* (likely valid) state
yield (history, None, STATE_IDLE, "<p>No Space created yet.</p>", "", "", 0,
None, None, None, False, # Reset use_grounding to default False, other states to None/default
current_gemini_key, current_gemini_model) # Explicitly pass back current state values
# No return needed after yield in this generator pattern; execution for this click ends here.
elif generate_match:
# User requested generation with description and name
new_app_desc = generate_match.group(1).strip() # Capture description part
new_repo_name = generate_match.group(2).strip() # Capture name part
history = add_bot_message(history, f"Acknowledged: '{message}'. Starting workflow to create Space `{hf_profile.username}/{new_repo_name}` for a '{new_app_desc}' app.")
# Update state variables for the next step (creation)
state = STATE_CREATING_SPACE
repo_name = new_repo_name
app_desc = new_app_desc
# Yield updated history and state variables (pass UI outputs through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif create_match:
# User requested simple space creation with a name
new_repo_name = create_match.group(1).strip()
history = add_bot_message(history, f"Acknowledged: '{message}'. Starting workflow to create Space `{hf_profile.username}/{new_repo_name}`.")
state = STATE_CREATING_SPACE # Transition state to creation
repo_name = new_repo_name # Store the validated repo name
# Yield updated history and state variables (pass UI outputs through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif "create" in message.lower() and not repo_id:
# User wants to create but didn't specify a name yet
history = add_bot_message(history, "Okay, what should the Space be called? (e.g., `my-awesome-app`)")
state = STATE_AWAITING_REPO_NAME # Transition to the state where we wait for the name
# Yield updated history and state (pass UI outputs through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
else:
# Command not recognized in IDLE state
history = add_bot_message(history, "Command not recognized. Try 'generate me a gradio app called myapp', or 'reset'.")
# Yield updated history and current state (pass UI outputs through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif state == STATE_AWAITING_REPO_NAME:
# User's message is expected to be the repo name
new_repo_name = message.strip()
# Basic validation for Hugging Face repo name format
# Allow letters, numbers, hyphens, underscores, max 100 chars (HF limit check)
if not new_repo_name or re.search(r'[^a-zA-Z0-9_-]', new_repo_name) or len(new_repo_name) > 100:
history = add_bot_message(history, "Invalid name. Please provide a single word/slug for the Space name (letters, numbers, underscores, hyphens only, max 100 chars).")
# Stay in AWAITING_REPO_NAME state and yield message (pass UI outputs through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
else:
history = add_bot_message(history, f"Using Space name `{new_repo_name}`. Creating Space `{hf_profile.username}/{new_repo_name}`...")
state = STATE_CREATING_SPACE # Transition state to creation
repo_name = new_repo_name # Store the validated repo name
# Yield updated history, state, and repo name. UI outputs remain unchanged for now.
# The next click will proceed from the STATE_CREATING_SPACE block.
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
# Note: Each 'elif' block below represents a distinct step in the workflow triggered
# when the 'state' variable matches its condition on a button click.
elif state == STATE_CREATING_SPACE:
# Ensure repo_name is available (it should have been set in the previous step)
if not repo_name:
history = add_bot_message(history, "Internal error: Repo name missing for creation. Resetting.")
# Reset relevant states and UI outputs on critical error
yield (history, None, STATE_IDLE, "<p>Error creating space.</p>", "", "", 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model) # Pass grounding state through
# No return needed
else:
try:
# Perform the action to create the Space on Hugging Face
new_repo_id, iframe_html = create_space_action(repo_name, space_sdk, hf_profile, hf_token)
updated_preview = iframe_html # Update the iframe content to show the new space
repo_id = new_repo_id # Store the official repo_id
history = add_bot_message(history, f"✅ Space `{repo_id}` created. Click 'Send' to generate and upload code.")
state = STATE_GENERATING_CODE # Transition to the next state
# Yield updated state variables and history, and the new iframe HTML
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model) # Pass logs and grounding through
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error creating space: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, "<p>Error creating space.</p>", "", "", 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model) # Pass logs and grounding through
# No return needed
elif state == STATE_GENERATING_CODE:
# Define the prompt for Gemini based on the app description or a default
prompt_desc = app_desc if app_desc else f'a simple {space_sdk} app'
prompt = f"""
You are an AI assistant specializing in Hugging Face Spaces using the {space_sdk} SDK.
Generate a full, single-file Python app based on:
'{prompt_desc}'
Ensure the code is runnable as `app.py` in a Hugging Face Space using the `{space_sdk}` SDK. Include necessary imports and setup.
Return **only** the python code block for `app.py`. Do not include any extra text, explanations, or markdown outside the code block.
"""
try:
history = add_bot_message(history, f"🧠 Generating `{prompt_desc}` `{space_sdk}` app (`app.py`) code with Gemini...")
if use_grounding:
history = add_bot_message(history, "(Using Grounding with Google Search)")
# Yield to show message before the potentially time-consuming API call
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# Perform the Gemini API call to generate code, optionally using grounding
# Use the current_gemini_key and current_gemini_model derived from state inputs
code = call_gemini(prompt, current_gemini_key, current_gemini_model, use_grounding=use_grounding)
code = code.strip()
# Clean up common markdown code block formatting if present
if code.startswith("```python"):
code = code[len("```python"):].strip()
if code.startswith("```"): # Handle generic code blocks too
code = code[len("```"):].strip()
if code.endswith("```"):
code = code[:-len("```")].strip()
if not code:
raise ValueError("Gemini returned empty code.")
history = add_bot_message(history, "✅ `app.py` code generated. Click 'Send' to upload.")
state = STATE_UPLOADING_APP_PY # Transition to the upload state
generated_code = code # Store the generated code in the state variable for the next step
# Yield updated state variables and history (pass UI outputs and other states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error generating code: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif state == STATE_UPLOADING_APP_PY:
# Retrieve the generated code from the state variable
code_to_upload = generated_code
if not code_to_upload:
history = add_bot_message(history, "Internal error: No code to upload. Resetting.")
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
else:
history = add_bot_message(history, "☁️ Uploading `app.py`...")
# Yield to show message before the upload action (pass UI outputs and states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
try:
# Perform the file upload action
upload_file_to_space_action(io.StringIO(code_to_upload), "app.py", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `app.py`. Click 'Send' to generate requirements.")
state = STATE_GENERATING_REQUIREMENTS # Transition state
generated_code = None # Clear the stored code after use to free memory/state space
# Yield updated state variables and history (pass UI outputs and other states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error uploading `app.py`: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif state == STATE_GENERATING_REQUIREMENTS:
history = add_bot_message(history, "📄 Generating `requirements.txt`...")
# Yield to show message before generating requirements (pass UI outputs and states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# Logic to determine required packages based on SDK and keywords in the app description
reqs_list = ["gradio"] if space_sdk == "gradio" else ["streamlit"]
# Add essential libraries regardless of description keywords or grounding
essential_libs = ["google-generativeai", "huggingface_hub"]
# Only add if Gemini is actually needed for the app (determined by description or if key is present)
# If we are here, key and model are available based on STATE_IDLE checks
reqs_list.extend(essential_libs)
# Add common libraries if description suggests they might be needed
if app_desc:
app_desc_lower = app_desc.lower()
if "requests" in app_desc_lower or "api" in app_desc_lower:
reqs_list.append("requests")
# Image processing libraries
if "image" in app_desc_lower or "upload" in app_desc_lower or "blur" in app_desc_lower or "vision" in app_desc_lower or "photo" in app_desc_lower:
reqs_list.append("Pillow")
if "numpy" in app_desc_lower: reqs_list.append("numpy")
if "pandas" in app_desc_lower or "dataframe" in app_desc_lower: reqs_list.append("pandas")
# Add scikit-image and opencv if image processing is heavily implied
if any(lib in app_desc_lower for lib in ["scikit-image", "skimage", "cv2", "opencv"]):
reqs_list.extend(["scikit-image", "opencv-python"]) # Note: opencv-python for pip
# Add transformers if large models are implied
if any(lib in app_desc_lower for lib in ["transformer", "llama", "mistral", "bert", "gpt2"]):
reqs_list.append("transformers")
# Add torch or tensorflow if deep learning frameworks are implied
if any(lib in app_desc_lower for lib in ["torch", "pytorch", "tensorflow", "keras"]):
reqs_list.extend(["torch", "tensorflow"]) # Users might need specific versions, but this is a start
# Use dict.fromkeys to get unique items while preserving insertion order (Python 3.7+)
reqs_list = list(dict.fromkeys(reqs_list))
# Sort alphabetically for cleaner requirements.txt
reqs_list.sort()
reqs_content = "\n".join(reqs_list) + "\n"
history = add_bot_message(history, "✅ `requirements.txt` generated. Click 'Send' to upload.")
state = STATE_UPLOADING_REQUIREMENTS # Transition state
generated_code = reqs_content # Store requirements content
# Yield updated state variables and history (pass UI outputs and other states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif state == STATE_UPLOADING_REQUIREMENTS:
# Retrieve requirements content from state variable
reqs_content_to_upload = generated_code
if not reqs_content_to_upload:
history = add_bot_message(history, "Internal error: No requirements content to upload. Resetting.")
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
else:
history = add_bot_message(history, "☁️ Uploading `requirements.txt`...")
# Yield message before upload (pass UI outputs and states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
try:
# Perform requirements file upload
upload_file_to_space_action(io.StringIO(reqs_content_to_upload), "requirements.txt", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `requirements.txt`. Click 'Send' to generate README.")
state = STATE_GENERATING_README # Transition state
generated_code = None # Clear content after use
# Yield updated state variables and history (pass UI outputs and other states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error uploading `requirements.txt`: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif state == STATE_GENERATING_README:
history = add_bot_message(history, "📝 Generating `README.md`...")
# Yield message before generating README (pass UI outputs and states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# Generate simple README content with Space metadata header
readme_title = repo_name if repo_name else "My Awesome Space"
readme_description = app_desc if app_desc else f"This Hugging Face Space hosts an AI-generated {space_sdk} application."
readme_content = f"""---
title: {readme_title}
emoji: 🚀
colorFrom: blue
colorTo: yellow
sdk: {space_sdk}
app_file: app.py
pinned: false
---
# {readme_title}
{readme_description}
This Space was automatically generated by an AI workflow using Google Gemini and Gradio.
""" # Added Space metadata header and slightly improved content
history = add_bot_message(history, "✅ `README.md` generated. Click 'Send' to upload.")
state = STATE_UPLOADING_README # Transition state
generated_code = readme_content # Store README content
# Yield updated state variables and history (pass UI outputs and other states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif state == STATE_UPLOADING_README:
# Retrieve README content from state variable
readme_content_to_upload = generated_code
if not readme_content_to_upload:
history = add_bot_message(history, "Internal error: No README content to upload. Resetting.")
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
else:
history = add_bot_message(history, "☁️ Uploading `README.md`...")
# Yield message before upload (pass UI outputs and states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
try:
# Perform README file upload
upload_file_to_space_action(io.StringIO(readme_content_to_upload), "README.md", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `README.md`. All files uploaded. Space is now building. Click 'Send' to check build logs.")
state = STATE_CHECKING_LOGS_BUILD # Transition to checking build logs
generated_code = None # Clear content after use
# Yield updated state variables and history (pass UI outputs and other states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error uploading `README.md`: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif state == STATE_CHECKING_LOGS_BUILD:
history = add_bot_message(history, "🔍 Fetching build logs...")
# Yield message before fetching logs (which includes a delay) (pass UI outputs and states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# Fetch build logs from HF Space
build_logs_text = get_build_logs_action(repo_id, hf_profile, hf_token)
updated_build = build_logs_text # Update the logs display variable
# Simple check for common error indicators in logs (case-insensitive)
if "error" in updated_build.lower() or "exception" in updated_build.lower() or "build failed" in updated_build.lower():
history = add_bot_message(history, "⚠️ Build logs indicate potential issues. Please inspect above. Click 'Send' to check container logs (app might still start despite build warnings).")
state = STATE_CHECKING_LOGS_RUN # Transition even on build error, to see if container starts
# Yield updated state, logs, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
else:
history = add_bot_message(history, "✅ Build logs fetched. Click 'Send' to check container logs.")
state = STATE_CHECKING_LOGS_RUN # Transition to next log check
# Yield updated state, logs, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif state == STATE_CHECKING_LOGS_RUN:
history = add_bot_message(history, "🔍 Fetching container logs...")
# Yield message before fetching logs (includes a delay) (pass UI outputs and states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# Fetch container logs from HF Space
container_logs_text = get_container_logs_action(repo_id, hf_profile, hf_token)
updated_run = container_logs_text # Update the logs display variable
# Check for errors in run logs and if we have debug attempts left
if ("error" in updated_run.lower() or "exception" in updated_run.lower()) and attempts < MAX_DEBUG_ATTEMPTS:
attempts += 1 # Increment debug attempts counter
history = add_bot_message(history, f"❌ Errors detected in container logs. Attempting debug fix #{attempts}/{MAX_DEBUG_ATTEMPTS}. Click 'Send' to proceed.")
state = STATE_DEBUGGING_CODE # Transition to the debugging state
# Yield updated state, logs, attempts, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif ("error" in updated_run.lower() or "exception" in updated_run.lower()) and attempts >= MAX_DEBUG_ATTEMPTS:
# Max debug attempts reached
history = add_bot_message(history, f"❌ Errors detected in container logs. Max debug attempts ({MAX_DEBUG_ATTEMPTS}) reached. Please inspect logs manually or click 'reset'.")
state = STATE_COMPLETE # Workflow ends on failure after attempts
# Yield updated state, logs, attempts, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
else:
# No significant errors found in logs, assume success
history = add_bot_message(history, "✅ App appears to be running successfully! Check the iframe above. Click 'reset' to start a new project.")
state = STATE_COMPLETE # Workflow ends on success
# Yield updated state, logs, attempts, and variables
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif state == STATE_DEBUGGING_CODE:
history = add_bot_message(history, f"🧠 Calling Gemini to generate fix based on logs...")
if use_grounding:
history = add_bot_message(history, "(Using Grounding with Google Search)")
# Yield message before Gemini API call (pass UI outputs and states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# Construct prompt for Gemini including the container logs
debug_prompt = f"""
You are debugging a {space_sdk} Space. The goal is to fix the code in `app.py` based on the container logs provided.
Here are the container logs:
Use code with caution.
Python
{updated_run}
Generate the *complete, fixed* content for `app.py` based on these logs.
Return **only** the python code block for app.py. Do not include any extra text, explanations, or markdown outside the code block.
"""
try:
# Call Gemini to generate the corrected code, optionally using grounding
# Note: Grounding might be less effective for debugging based *only* on logs,
# but we include the option as requested.
# Use the current_gemini_key and current_gemini_model derived from state inputs
fix_code = call_gemini(debug_prompt, current_gemini_key, current_gemini_model, use_grounding=use_grounding)
fix_code = fix_code.strip()
# Clean up potential markdown formatting
if fix_code.startswith("```python"):
fix_code = fix_code[len("```python"):].strip()
if fix_code.startswith("```"):
fix_code = fix_code[len("```"):].strip()
if fix_code.endswith("```"):
fix_code = fix_code[:-len("```")].strip()
if not fix_code:
raise ValueError("Gemini returned empty fix code.")
history = add_bot_message(history, "✅ Fix code generated. Click 'Send' to upload.")
state = STATE_UPLOADING_FIXED_APP_PY # Transition to the upload state for the fix
generated_code = fix_code # Store the generated fix code
# Yield updated state, code, and variables (pass UI outputs and states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error generating debug code: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif state == STATE_UPLOADING_FIXED_APP_PY:
# Retrieve the fixed code from the state variable
fixed_code_to_upload = generated_code
if not fixed_code_to_upload:
history = add_bot_message(history, "Internal error: No fixed code available to upload. Resetting.")
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
else:
history = add_bot_message(history, "☁️ Uploading fixed `app.py`...")
# Yield message before upload (pass UI outputs and states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
try:
# Perform the upload of the fixed app.py
upload_file_to_space_action(io.StringIO(fixed_code_to_upload), "app.py", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Fixed `app.py` uploaded. Space will rebuild. Click 'Send' to check logs again.")
state = STATE_CHECKING_LOGS_RUN # Go back to checking run logs after uploading the fix
generated_code = None # Clear code after use
# Yield updated state, code, and variables (pass UI outputs and states through)
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
except Exception as e:
history = add_bot_message(history, f"❌ Error uploading fixed `app.py`: {e}. Click 'reset'.")
# Yield error message and reset state on failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
elif state == STATE_COMPLETE:
# If in the complete state, the workflow is finished for this project.
# Subsequent clicks just add user messages; we simply yield the current state.
yield (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
# No return needed
except Exception as e:
# This catches any unexpected errors that occur within any state's logic
error_message = f"Workflow step failed unexpectedly ({state}): {e}. Click 'Send' to re-attempt this step or 'reset'."
history = add_bot_message(history, error_message)
print(f"Critical Error in state {state}: {e}") # Log the error for debugging purposes
# Yield an error state and reset essential workflow variables on critical failure
yield (history, None, STATE_IDLE, updated_preview, updated_run, updated_build, 0,
None, None, None, use_grounding,
current_gemini_key, current_gemini_model) # Include use_grounding and Gemini states
# No return needed after yield
# --- Build the Gradio UI ---
with gr.Blocks(title="AI-Powered HF Space App Builder") as ai_builder_tab:
# Gradio State variables - these persist their values across user interactions (clicks)
# Define these first as they might be used in default values for components
hf_profile = gr.State(None)
hf_token = gr.State(None)
# RENAMED: Initialize gemini_api_key_state to empty string
gemini_api_key_state = gr.State("") # start with no key
# RENAMED: Initialize gemini_model_state
gemini_model_state = gr.State("gemini-1.5-flash") # Default selected model
repo_id = gr.State(None) # Stores the ID of the created Space
workflow = gr.State(STATE_IDLE) # Stores the current state of the AI workflow
sdk_state = gr.State("gradio") # Stores the selected Space SDK (Gradio or Streamlit)
debug_attempts = gr.State(0) # Counter for how many debugging attempts have been made
app_description = gr.State(None) # Stores the user's initial description of the desired app
repo_name_state = gr.State(None) # Stores the chosen repository name for the Space
generated_code_state = gr.State(None) # Temporary storage for generated file content (app.py, reqs, README)
# New State variable for grounding checkbox
use_grounding_state = gr.State(False)
# Define the inputs used for checking prerequisites using the RENAMED states
# Moved definition *after* the state variables are defined
send_button_interactive_binding_inputs = [
hf_profile,
hf_token,
gemini_api_key_state, # Use new state name
gemini_model_state # Use new state name
]
with gr.Row():
# Sidebar column for inputs and status displays
with gr.Column(scale=1, min_width=300):
gr.Markdown("## Hugging Face Login")
# Define login_status before it's used in login_btn.click outputs
login_status = gr.Markdown("*Not logged in.*")
# Hugging Face Login Button
login_btn = gr.LoginButton(variant="huggingface")
gr.Markdown("## Google AI Studio / Gemini")
# Define gemini_input and gemini_status before they are used in change handlers
# CHANGED: Blank out textbox on load and update info text
gemini_input = gr.Textbox(
label="Your Google AI Studio API Key", # Changed label
type="password", # Hides input for security
interactive=True,
value="", # Don't pre-fill from env var
info="Enter your own key here" # Updated info text
)
gemini_status = gr.Markdown("") # Display Gemini configuration status
# Define model_selector before it's used in its change handler
model_selector = gr.Radio(
choices=[
("Gemini 1.5 Flash", "gemini-1.5-flash"),
("Gemini 1.5 Pro", "gemini-1.5-pro"),
("Gemini 1.0 Pro", "gemini-1.0-pro"),
],
value="gemini-1.5-flash", # Default selection
label="Select model",
interactive=True
)
# Define grounding checkbox before its change handler
use_grounding_checkbox = gr.Checkbox(
label="Enable Grounding with Google Search",
value=False, # Default to off
interactive=True,
info="Use Google Search results to inform Gemini's response (may improve factuality)."
)
gr.Markdown("## Space SDK")
# Define sdk_selector before its change handler
sdk_selector = gr.Radio(choices=["gradio","streamlit"], value="gradio", label="Template SDK", interactive=True)
gr.Markdown("## Workflow Status")
# Define status_text and repo_id_text before they are used in change handlers
status_text = gr.Textbox(label="Current State", value=STATE_IDLE, interactive=False)
repo_id_text = gr.Textbox(label="Current Space ID", value="None", interactive=False)
# Main content area column
with gr.Column(scale=3):
# Define chatbot, user_input, send_btn before send_btn.click
chatbot = gr.Chatbot(type='messages', label="AI Workflow Chat")
user_input = gr.Textbox(placeholder="Type your message…", interactive=True)
# Define send_btn before its click handler
# Initial interactive state will be handled by the load event chain
send_btn = gr.Button("Send") # Starts disabled by default (interactive=False)
# Define iframe, build_txt, run_txt before they are used in send_btn.click inputs/outputs
# These are UI components, NOT State variables
iframe = gr.HTML("<p>No Space created yet.</p>") # HTML element for the Space iframe
build_txt = gr.Textbox(label="Build Logs", lines=10, interactive=False, value="", max_lines=20) # Set max_lines for scrollability
run_txt = gr.Textbox(label="Container Logs", lines=10, interactive=False, value="", max_lines=20) # Set max_lines for scrollability
# --- Define Event Handlers and Chains AFTER all components are defined ---
# Handle login button click: Update profile/token state -> Check prereqs and update button interactivity
# LoginButton outputs a tuple (OAuthProfile, OAuthToken) on success
login_btn.click(
lambda x: (x[0], x[1]),
inputs=[login_btn],
outputs=[hf_profile, hf_token] # Update HF State variables
).then( # Chain the next action after state is updated
# Call the update function and bind its output to the button component
check_send_button_ready,
inputs=send_button_interactive_binding_inputs, # Use the explicit list with renamed states
outputs=[send_btn] # Update button interactivity using gr.update return value
)
# Handle Gemini Key Input change: Update key state -> Configure Gemini status -> Check prereqs and update button interactivity
# This chain is crucial for the new key handling logic
gemini_input.change(
lambda k: k,
inputs=[gemini_input],
outputs=[gemini_api_key_state] # Update RENAMED gemini_api_key_state with textbox value
).then(
# Use RENAMED state variables as inputs to configure_gemini
configure_gemini,
inputs=[gemini_api_key_state, gemini_model_state],
outputs=[gemini_status] # Update Gemini status based on new key
).then(
# Call the update function and bind its output to the button component
check_send_button_ready,
inputs=send_button_interactive_binding_inputs, # Use the explicit list with renamed states
outputs=[send_btn] # Update button interactivity using gr.update return value
)
# Handle Gemini Model Selector change: Update model state -> Configure Gemini status -> Check prereqs and update button interactivity
# This chain is crucial for the new key handling logic
model_selector.change(
lambda m: m,
inputs=[model_selector],
outputs=[gemini_model_state] # Update RENAMED gemini_model_state with selected model
).then(
# Use RENAMED state variables as inputs to configure_gemini
configure_gemini,
inputs=[gemini_api_key_state, gemini_model_state],
outputs=[gemini_status] # Update Gemini status based on new model
).then(
# Call the update function and bind its output to the button component
check_send_button_ready,
inputs=send_button_interactive_binding_inputs, # Use the explicit list with renamed states
outputs=[send_btn] # Update button interactivity using gr.update return value
)
# Handle Grounding checkbox change: update grounding state
use_grounding_checkbox.change(
lambda v: v, inputs=use_grounding_checkbox, outputs=use_grounding_state
)
# Handle SDK selector change: update sdk state
sdk_selector.change(
lambda s: s, inputs=sdk_selector, outputs=sdk_state
)
# Link Workflow State variable change to UI status display
workflow.change(lambda s: s, inputs=workflow, outputs=status_text)
# Link Repo ID State variable change to UI status display
repo_id.change(lambda r: r if r else "None", inputs=repo_id, outputs=repo_id_text)
# The main event handler for the Send button
# This .click() event triggers the ai_workflow_chat generator function
# Inputs are read from UI components AND State variables
# Outputs are updated by the values yielded from the generator
# MODIFIED: Inputs use renamed gemini state variables
# MODIFIED: Outputs include renamed gemini state variables
send_btn.click(
ai_workflow_chat, # The generator function to run
inputs=[
user_input, chatbot, # UI component inputs (message, current chat history)
hf_profile, hf_token, # HF State variables
# Pass RENAMED gemini state variables as inputs
gemini_api_key_state, gemini_model_state,
repo_id, workflow, sdk_state, # Workflow State variables
# UI component inputs whose *current values* are needed by the generator
iframe, run_txt, build_txt, # UI component inputs (current values)
debug_attempts, app_description, repo_name_state, generated_code_state, # Other State variables
use_grounding_state # Grounding state input
],
outputs=[
chatbot, # Update Chatbot with new messages
repo_id, workflow, # Update workflow State variables
iframe, run_txt, build_txt, # Update UI component outputs
debug_attempts, app_description, repo_name_state, generated_code_state, # Update other State variables
use_grounding_state, # Update the grounding state output
# Include RENAMED gemini state variables in outputs to ensure consistency
gemini_api_key_state, gemini_model_state
]
).success( # Chain a .success() event to run *after* the .click() handler completes without error
# Clear the user input textbox after the message is sent and processed
lambda: gr.update(value=""),
inputs=None,
outputs=user_input # Update the user input textbox
)
# --- Initial Load Event Chain (Defined INSIDE gr.Blocks, AFTER components and initial bindings) ---
# This chain runs once when the app loads
ai_builder_tab.load(
# Action 1: Show profile (loads cached login if available), does NOT need inputs
show_profile,
inputs=None,
outputs=login_status # Update login status markdown
).then(
# Action 2: Configure Gemini using the initial state values.
# Since gemini_api_key_state state starts as "", this will initially show a "key is not set" message.
# Use RENAMED state variables as inputs
configure_gemini,
inputs=[gemini_api_key_state, gemini_model_state],
outputs=[gemini_status] # Update Gemini status display
).then(
# Action 3: Check prereqs and update send button interactivity based on initial states.
# Since gemini_api_key_state state starts as "", button will initially be disabled.
check_send_button_ready,
inputs=send_button_interactive_binding_inputs, # Use the explicit list with renamed states
outputs=[send_btn] # Update button interactivity using gr.update return value
).then(
# Action 4: Add the initial welcome message to the chatbot
greet,
inputs=None,
outputs=chatbot
)
# The main workflow function and other helper functions are correctly defined OUTSIDE the gr.Blocks context
# because they operate on the *values* passed to them by Gradio event triggers, not the UI component objects themselves.
if __name__ == "__main__":
# Optional: Configure retries for huggingface_hub requests to make them more robust
# from requests.adapters import HTTPAdapter
# from urllib3.util.retry import Retry
# retry_strategy = Retry(total=5, backoff_factor=1, status_forcelist=[429, 500, 502, 503, 504]) # Define retry strategy for specific HTTP codes
# adapter = HTTPAdapter(max_retries=retry_strategy)
# session = get_session() # Get the session object used internally by huggingface_hub
# session.mount("http://", adapter)
# session.mount("https://", adapter)
# Optional: Configure Gradio settings using environment variables
# Set max upload size (e.g., 100MB) for files like app.py
os.environ["GRADIO_MAX_FILE_SIZE"] = "100MB"
# Optional: Set a local temporary directory for Gradio uploads
os.environ["GRADIO_TEMP_DIR"] = "./tmp"
os.makedirs(os.environ["GRADIO_TEMP_DIR"], exist_ok=True) # Ensure the directory exists
# Launch the Gradio UI
# The Gradio launch call blocks execution.
ai_builder_tab.launch()