File size: 7,637 Bytes
b874ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import re
import json
import time
import importlib.metadata
import gradio as gr
from huggingface_hub import create_repo, upload_file, list_models, constants
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status
from google import genai
from google.genai.types import Tool, GenerateContentConfig, GoogleSearch

# — USER INFO & MODEL LISTING —

def show_profile(profile: gr.OAuthProfile | None) -> str:
    if profile is None:
        return "*Not logged in.*"
    return f"✅ Logged in as **{profile.username}**"

def list_private_models(
    profile: gr.OAuthProfile | None,
    oauth_token: gr.OAuthToken | None
) -> str:
    if profile is None or oauth_token is None:
        return "Please log in to see your models."
    models = [
        f"{m.id} ({'private' if m.private else 'public'})"
        for m in list_models(author=profile.username, token=oauth_token.token)
    ]
    return "No models found." if not models else "Models:\n\n" + "\n - ".join(models)

# — UTILITIES —

def get_sdk_version(sdk_choice: str) -> str:
    pkg = "gradio" if sdk_choice == "gradio" else "streamlit"
    try:
        return importlib.metadata.version(pkg)
    except importlib.metadata.PackageNotFoundError:
        return "UNKNOWN"

def extract_code(text: str) -> str:
    blocks = re.findall(r"```(?:\w*\n)?([\s\S]*?)```", text)
    return blocks[-1].strip() if blocks else text.strip()

# — HF SPACE LOGGING —

def _get_space_jwt(repo_id: str):
    url = f"{constants.ENDPOINT}/api/spaces/{repo_id}/jwt"
    r = get_session().get(url, headers=build_hf_headers())
    hf_raise_for_status(r)
    return r.json()["token"]

def fetch_logs(repo_id: str, level: str) -> str:
    jwt = _get_space_jwt(repo_id)
    logs_url = f"https://api.hf.space/v1/{repo_id}/logs/{level}"
    lines = []
    with get_session().get(logs_url, headers=build_hf_headers(token=jwt), stream=True) as resp:
        hf_raise_for_status(resp)
        for raw in resp.iter_lines():
            if raw.startswith(b"data: "):
                try:
                    ev = json.loads(raw[len(b"data: "):].decode())
                    ts  = ev.get("timestamp","")
                    txt = ev.get("data","")
                    lines.append(f"[{ts}] {txt}")
                except:
                    continue
    return "\n".join(lines)

# — CORE LOOP —

def handle_user_message(
    history,
    sdk_choice: str,
    gemini_api_key: str,
    grounding_enabled: bool,
    profile: gr.OAuthProfile | None,
    oauth_token: gr.OAuthToken | None
):
    if profile is None or oauth_token is None:
        return history + [{"role":"assistant","content":"⚠️ Please log in first."}], "", "", "<p>No Space yet.</p>"

    client = genai.Client(api_key=gemini_api_key)
    system_msg = {
        "role":"system",
        "content":(
            f"You are an AI assistant writing a HuggingFace Space using the "
            f"{sdk_choice} SDK. After producing code, wait for logs; if errors appear, fix them."
        )
    }
    chat = [system_msg] + history

    code_fn   = "app.py" if sdk_choice=="gradio" else "streamlit_app.py"
    readme_fn = "README.md"
    reqs_fn   = "requirements.txt"
    repo_id   = f"{profile.username}/{profile.username}-auto-space"

    build_logs = run_logs = ""
    for _ in range(5):
        tools = [Tool(google_search=GoogleSearch())] if grounding_enabled else []
        cfg   = GenerateContentConfig(tools=tools, response_modalities=["TEXT"])

        resp = client.models.generate_content(
            model="gemini-2.5-flash-preview-04-17",
            contents=[m["content"] for m in chat],
            config=cfg
        )

        raw = resp.text
        code = extract_code(raw)
        chat.append({"role":"assistant","content":code})

        # write code
        with open(code_fn, "w") as f:
            f.write(code)

        # write dynamic README
        sdk_version = get_sdk_version(sdk_choice)
        readme = f"""---
title: Wuhp Auto Space
emoji: 🐢
colorFrom: red
colorTo: pink
sdk: {sdk_choice}
sdk_version: {sdk_version}
app_file: {code_fn}
pinned: false
---

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
"""
        with open(readme_fn, "w") as f:
            f.write(readme)

        # write requirements
        base_reqs = "pandas\n"
        extra     = "streamlit\n" if sdk_choice=="streamlit" else "gradio\n"
        with open(reqs_fn, "w") as f:
            f.write(base_reqs + extra)

        # push to HF
        create_repo(repo_id=repo_id, token=oauth_token.token,
                    exist_ok=True, repo_type="space", space_sdk=sdk_choice)
        for fn in (code_fn, readme_fn, reqs_fn):
            upload_file(path_or_fileobj=fn, path_in_repo=fn,
                        repo_id=repo_id, token=oauth_token.token,
                        repo_type="space")

        build_logs = fetch_logs(repo_id, "build")
        run_logs   = fetch_logs(repo_id, "run")
        if "ERROR" not in build_logs.upper() and "ERROR" not in run_logs.upper():
            break

        chat.append({
            "role":"user",
            "content":(
                f"Build logs:\n{build_logs}\n\n"
                f"Run logs:\n{run_logs}\n\n"
                "Please fix the code."
            )
        })
        time.sleep(2)

    messages = [{"role":m["role"],"content":m["content"]} for m in chat if m["role"]!="system"]
    iframe   = f'<iframe src="https://huggingface.co/spaces/{repo_id}" width="100%" height="500px"></iframe>'
    return messages, build_logs, run_logs, iframe

# — BUILD THE UI —

with gr.Blocks(title="HF Space Auto‑Builder") as demo:
    gr.Markdown("## Sign in + Auto‑Build Spaces\n\n1. Sign in  2. Enter your prompt  3. Watch code, README, requirements, logs, and preview\n\n---")

    # LOGIN & MODEL LISTING
    login_btn = gr.LoginButton(variant="huggingface", size="lg")
    status_md = gr.Markdown("*Not logged in.*")
    models_md = gr.Markdown()
    demo.load(show_profile,        inputs=None, outputs=status_md)
    demo.load(list_private_models, inputs=None, outputs=models_md)
    login_btn.click(show_profile,        inputs=None, outputs=status_md)
    login_btn.click(list_private_models, inputs=None, outputs=models_md)

    # CONTROLS
    sdk_choice = gr.Radio(["gradio","streamlit"], value="gradio", label="SDK template")
    api_key    = gr.Textbox(label="Gemini API Key", type="password")
    grounding  = gr.Checkbox(label="Enable grounding", value=False)

    # CHAT + OUTPUTS
    chatbot   = gr.Chatbot(type="messages")
    user_in   = gr.Textbox(placeholder="Your prompt…", label="Prompt")
    send_btn  = gr.Button("Send")

    build_box = gr.Textbox(label="Build logs", lines=5, interactive=False)
    run_box   = gr.Textbox(label="Run logs",   lines=5, interactive=False)
    preview   = gr.HTML("<p>No Space yet.</p>")

    send_btn.click(
        fn=handle_user_message,
        inputs=[chatbot, sdk_choice, api_key, grounding],
        outputs=[chatbot, build_box, run_box, preview]
    )

    # — Refresh Logs button —
    def _refresh(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None):
        if not profile or not oauth_token:
            return "", ""
        repo = f"{profile.username}/{profile.username}-auto-space"
        return fetch_logs(repo, "build"), fetch_logs(repo, "run")

    refresh_btn = gr.Button("Refresh Logs")
    # Gradio will auto‑inject `profile` and `oauth_token` here.
    refresh_btn.click(_refresh, inputs=None, outputs=[build_box, run_box])

    demo.launch(server_name="0.0.0.0", server_port=7860)