File size: 5,781 Bytes
9194337
 
 
 
76a7609
45e9fba
9194337
 
 
 
a400f6e
9194337
 
 
 
 
 
 
 
 
 
 
 
45e9fba
 
76a7609
 
 
45e9fba
9194337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a400f6e
 
 
9194337
a400f6e
9194337
 
 
 
 
 
 
 
 
d5d8755
 
 
 
 
 
76a7609
d5d8755
76a7609
d5d8755
a3af143
d5d8755
 
 
 
 
9194337
 
76a7609
 
 
 
 
9194337
 
 
 
76a7609
9194337
 
76a7609
 
 
 
 
 
 
9194337
 
 
 
 
76a7609
9194337
 
 
76a7609
 
9194337
 
 
76a7609
 
9194337
 
45e9fba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# main.py

import os
import json
import uuid
import gradio as gr

from google import genai
from google.genai import types
from google.genai.types import Tool, GoogleSearch
from huggingface_hub import create_repo, HfApi

# β€”β€”β€” Configuration β€”β€”β€”
MODEL_ID = "gemini-2.5-flash-preview-04-17"
WORKSPACE_DIR = "workspace"
SYSTEM_INSTRUCTION = (
    "You are a helpful coding assistant that scaffolds a complete Hugging Face Space app. "
    "Based on the user's request, decide between Gradio or Streamlit (whichever fits best), "
    "and respond with exactly one JSON object with keys:\n"
    "  β€’ \"framework\": either \"gradio\" or \"streamlit\"\n"
    "  β€’ \"files\": a map of relative file paths to file contents\n"
    "  β€’ \"message\": a human-readable summary\n"
    "Do not include extra text or markdown."
)

# In-memory session store: maps session IDs to state dicts
state_store = {}


def start_app(gemini_key, hf_token, hf_username, repo_name):
    os.makedirs(WORKSPACE_DIR, exist_ok=True)
    client = genai.Client(api_key=gemini_key)
    config = types.GenerateContentConfig(system_instruction=SYSTEM_INSTRUCTION)
    tools = [Tool(google_search=GoogleSearch())]
    chat = client.chats.create(model=MODEL_ID, config=config, tools=tools)

    local_path = os.path.join(WORKSPACE_DIR, repo_name)
    os.makedirs(local_path, exist_ok=True)

    state = {
        "chat": chat,
        "hf_token": hf_token,
        "hf_username": hf_username,
        "repo_name": repo_name,
        "created": False,
        "repo_id": None,
        "local_path": local_path,
        "logs": [f"Initialized workspace at {WORKSPACE_DIR}/{repo_name}."],
    }
    return state


def handle_message(user_msg, state):
    chat = state["chat"]
    logs = state.get("logs", [])
    logs.append(f"> User: {user_msg}")

    resp = chat.send_message(user_msg)
    logs.append("Received response from Gemini.")
    text = resp.text

    try:
        data = json.loads(text)
        framework = data["framework"]
        files = data.get("files", {})
        reply_msg = data.get("message", "")
    except Exception:
        logs.append("⚠️ Failed to parse assistant JSON.\n" + text)
        state["logs"] = logs
        return "⚠️ Parsing error. Check logs.", state

    if not state["created"]:
        full_repo = f"{state['hf_username']}/{state['repo_name']}"
        logs.append(f"Creating HF Space '{full_repo}' with template '{framework}'.")
        create_repo(
            repo_id=full_repo,
            token=state["hf_token"],
            exist_ok=True,
            repo_type="space",
            space_sdk=framework
        )
        state["created"] = True
        state["repo_id"] = full_repo
        state["embed_url"] = f"https://huggingface.co/spaces/{full_repo}"

    if files:
        logs.append(f"Writing {len(files)} file(s): {list(files.keys())}")
        for relpath, content in files.items():
            dest = os.path.join(state["local_path"], relpath)
            os.makedirs(os.path.dirname(dest), exist_ok=True)
            with open(dest, "w", encoding="utf-8") as f:
                f.write(content)

    logs.append("Uploading snapshot to Hugging Face...")
    api = HfApi(token=state["hf_token"])
    api.upload_folder(
        folder_path=state["local_path"],
        repo_id=state["repo_id"],
        repo_type="space"
    )
    logs.append("Snapshot upload complete.")

    state["logs"] = logs
    return reply_msg, state


# β€”β€”β€” Gradio UI β€”β€”β€”
with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gemini_key = gr.Textbox(label="Gemini API Key", type="password")
            hf_token   = gr.Textbox(label="Hugging Face Token", type="password")
            hf_user    = gr.Textbox(label="HF Username")
            repo_name  = gr.Textbox(label="New App (repo) name")
            session_id = gr.Textbox(value="", visible=False)
            start_btn  = gr.Button("Start a new app")

        with gr.Column(scale=3):
            chatbot = gr.Chatbot(type="messages")
            logs_display   = gr.Textbox(label="Operation Logs", interactive=False, lines=8)
            preview_iframe = gr.HTML("<p>No deployed app yet.</p>")

            user_msg = gr.Textbox(label="Your message")
            send_btn = gr.Button("Send")

    def on_start(g_key, h_token, h_user, r_name):
        new_id = str(uuid.uuid4())
        state = start_app(g_key, h_token, h_user, r_name)
        state_store[new_id] = state
        logs = "\n".join(state["logs"])
        return new_id, logs, "<p>Awaiting first instruction...</p>"

    start_btn.click(
        on_start,
        inputs=[gemini_key, hf_token, hf_user, repo_name],
        outputs=[session_id, logs_display, preview_iframe]
    )

    def on_send(msg, chat_history, sess_id):
        if not sess_id or sess_id not in state_store:
            err = "Error: No API found. Please start a new app."
            return chat_history + [("", err)], sess_id, "", ""
        state = state_store[sess_id]
        reply, new_state = handle_message(msg, state)
        state_store[sess_id] = new_state
        chat_history = chat_history + [(msg, reply)]
        logs = "\n".join(new_state.get("logs", []))
        embed = ""
        if new_state.get("embed_url"):
            embed = f'<iframe src="{new_state["embed_url"]}" width="100%" height="500px"></iframe>'
        return chat_history, sess_id, logs, embed

    send_btn.click(
        on_send,
        inputs=[user_msg, chatbot, session_id],
        outputs=[chatbot, session_id, logs_display, preview_iframe]
    )
    user_msg.submit(
        on_send,
        inputs=[user_msg, chatbot, session_id],
        outputs=[chatbot, session_id, logs_display, preview_iframe]
    )

    demo.launch()