Spaces:
Sleeping
Sleeping
File size: 19,000 Bytes
a0f57d6 4eff17c a0f57d6 6146397 4c46f34 a0f57d6 0df9635 4eff17c 5d26448 9053015 fb9266f a0f57d6 9053015 a0f57d6 5d26448 a0f57d6 4eff17c 4c46f34 4eff17c a0f57d6 4c46f34 9053015 4eff17c a0f57d6 4eff17c a0f57d6 4eff17c a0f57d6 4eff17c a0f57d6 599725a a0f57d6 b2c5c54 a0f57d6 4eff17c a0f57d6 6146397 a0f57d6 4eff17c a0f57d6 4eff17c a0f57d6 0df9635 a0f57d6 70dd0f7 a0f57d6 70dd0f7 a0f57d6 599725a a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 6dbcd3a a0f57d6 e8459e6 a0f57d6 e8459e6 6dbcd3a e8459e6 6dbcd3a e8459e6 a0f57d6 6dbcd3a a0f57d6 9053015 6dbcd3a a0f57d6 e8459e6 6dbcd3a e8459e6 a0f57d6 e8459e6 9053015 a0f57d6 9053015 a0f57d6 9053015 e8459e6 9053015 e8459e6 9053015 e8459e6 9053015 a0f57d6 e8459e6 6dbcd3a e8459e6 a0f57d6 6dbcd3a a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 6dbcd3a a0f57d6 4eff17c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
# app.py
import os
import time
import json
import requests
import gradio as gr
import google.generativeai as genai
from huggingface_hub import create_repo, list_models, upload_file, constants
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status
# --- Helper functions for Hugging Face integration ---
def show_profile(profile: gr.OAuthProfile | None) -> str:
if profile is None:
return "*Not logged in.*"
return f"✅ Logged in as **{profile.username}**"
def list_private_models(
profile: gr.OAuthProfile | None,
oauth_token: gr.OAuthToken | None
) -> str:
if profile is None or oauth_token is None:
return "Please log in to see your models."
try:
models = [
f"{m.id} ({'private' if m.private else 'public'})"
for m in list_models(author=profile.username, token=oauth_token.token)
]
return "No models found." if not models else "Models:\n\n" + "\n - ".join(models)
except Exception as e:
return f"Error listing models: {e}"
def create_space_action(repo_name: str, sdk: str, profile: gr.OAuthProfile, token: gr.OAuthToken):
repo_id = f"{profile.username}/{repo_name}"
create_repo(
repo_id=repo_id,
token=token.token,
exist_ok=True,
repo_type="space",
space_sdk=sdk
)
url = f"https://huggingface.co/spaces/{repo_id}"
iframe = f'<iframe src="{url}" width="100%" height="500px"></iframe>'
return repo_id, iframe
def upload_file_to_space_action(
file_obj,
path_in_repo: str,
repo_id: str,
profile: gr.OAuthProfile,
token: gr.OAuthToken
) -> str:
if not (profile and token and repo_id):
return "⚠️ Please log in and create a Space first."
try:
upload_file(
path_or_fileobj=file_obj,
path_in_repo=path_in_repo,
repo_id=repo_id,
token=token.token,
repo_type="space"
)
return f"✅ Uploaded `{path_in_repo}`"
except Exception as e:
return f"Error uploading file: {e}"
def _fetch_space_logs_level(repo_id: str, level: str, token: str) -> str:
jwt_url = f"{constants.ENDPOINT}/api/spaces/{repo_id}/jwt"
r = get_session().get(jwt_url, headers=build_hf_headers(token=token))
hf_raise_for_status(r)
jwt = r.json()["token"]
logs_url = f"https://api.hf.space/v1/{repo_id}/logs/{level}"
lines, count = [], 0
with get_session().get(logs_url, headers=build_hf_headers(token=jwt), stream=True, timeout=20) as resp:
hf_raise_for_status(resp)
for raw in resp.iter_lines():
if count >= 200:
lines.append("... truncated ...")
break
if not raw.startswith(b"data: "):
continue
payload = raw[len(b"data: "):]
try:
event = json.loads(payload.decode())
ts = event.get("timestamp", "")
txt = event.get("data", "").strip()
if txt:
lines.append(f"[{ts}] {txt}")
count += 1
except json.JSONDecodeError:
continue
return "\n".join(lines) if lines else f"No {level} logs found."
def get_build_logs_action(repo_id, profile, token):
if not (repo_id and profile and token):
return "⚠️ Please log in and create a Space first."
return _fetch_space_logs_level(repo_id, "build", token.token)
def get_container_logs_action(repo_id, profile, token):
if not (repo_id and profile and token):
return "⚠️ Please log in and create a Space first."
return _fetch_space_logs_level(repo_id, "run", token.token)
# --- Google Gemini integration with model selection ---
def configure_gemini(api_key: str | None, model_name: str | None) -> str:
if not api_key:
return "Gemini API key is not set."
if not model_name:
return "Please select a Gemini model."
try:
genai.configure(api_key=api_key)
genai.GenerativeModel(model_name).generate_content("ping")
return f"Gemini configured successfully with **{model_name}**."
except Exception as e:
return f"Error configuring Gemini: {e}"
def call_gemini(prompt: str, api_key: str, model_name: str) -> str:
if not api_key or not model_name:
return "Error: Gemini API key or model not provided."
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel(model_name)
response = model.generate_content(prompt)
return response.text or "Gemini returned an empty response."
except Exception as e:
return f"Error calling Gemini API with {model_name}: {e}"
# --- AI workflow logic ---
def ai_workflow_chat(
message: str,
history: list[list[str | None]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id_state: str | None,
workflow_state: str,
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str
) -> tuple[
list[list[str | None]],
str | None,
str,
str,
str,
str
]:
history.append([message, None])
bot_message = ""
new_repo_id = repo_id_state
new_workflow = workflow_state
updated_preview = preview_html
updated_container = container_logs
updated_build = build_logs
try:
if not hf_profile or not hf_token:
bot_message = "Please log in to Hugging Face first."
new_workflow = "awaiting_login"
elif not gemini_api_key or not gemini_model:
bot_message = "Please enter your API key and select a Gemini model."
new_workflow = "awaiting_api_key"
elif (new_workflow == "idle" or "create" in message.lower()) and not new_repo_id:
bot_message = "What should the Space be called? (e.g., `my-awesome-app`)"
new_workflow = "awaiting_repo_name"
elif new_workflow == "awaiting_repo_name":
repo_name = message.strip()
if not repo_name:
bot_message = "Please provide a valid Space name."
else:
bot_message = f"Creating Space `{hf_profile.username}/{repo_name}`..."
new_repo_id, iframe_html = create_space_action(repo_name, space_sdk, hf_profile, hf_token)
updated_preview = iframe_html
bot_message += "\n✅ Space created."
new_workflow = "awaiting_app_description"
elif new_workflow in ("awaiting_app_description", "debugging"):
if new_workflow == "awaiting_app_description":
app_desc = message
bot_message = f"Generating code for a `{space_sdk}` app based on: '{app_desc}'..."
prompt = f"""
You are an AI assistant specializing in Hugging Face Spaces using the {space_sdk} SDK.
Generate a full, single-file Python app based on:
'{app_desc}'
Return **only** the code block (```python ...```).
"""
else:
debug_instr = message
logs = get_container_logs_action(new_repo_id, hf_profile, hf_token)
bot_message = f"Analyzing logs and applying fixes: '{debug_instr}'..."
prompt = f"""
You are debugging a {space_sdk} Space.
Logs:
{logs}
User instructions:
'{debug_instr}'
Generate a fixed, single-file Python app. Return only the ```python``` code block.
"""
new_workflow = "generating_code"
resp = call_gemini(prompt, gemini_api_key, gemini_model)
start = resp.find("```python")
end = resp.rfind("```")
if start != -1 and end != -1 and end > start:
code = resp[start + len("```python"):end].strip()
bot_message += "\n✅ Code generated. Uploading..."
new_workflow = "uploading_code"
upload_log = upload_file_to_space_action(code, "app.py", new_repo_id, hf_profile, hf_token)
bot_message += "\n" + upload_log
if "✅ Uploaded" in upload_log:
bot_message += "\nThe Space is now rebuilding. Say 'check logs' to fetch them."
new_workflow = "awaiting_log_check"
updated_preview = f'<iframe src="https://huggingface.co/spaces/{new_repo_id}" width="100%" height="500px"></iframe>'
else:
new_workflow = "idle"
else:
bot_message += f"\n⚠️ Could not parse code from Gemini.\nResponse:\n{resp}"
new_workflow = "awaiting_app_description"
elif new_workflow == "awaiting_log_check" and "check logs" in message.lower():
bot_message = "Fetching logs..."
updated_container = get_container_logs_action(new_repo_id, hf_profile, hf_token)
updated_build = get_build_logs_action(new_repo_id, hf_profile, hf_token)
bot_message += "\n✅ Logs updated. Describe any errors or say 'generate fix'."
new_workflow = "reviewing_logs"
elif new_workflow == "reviewing_logs" and "generate fix" in message.lower():
latest = get_container_logs_action(new_repo_id, hf_profile, hf_token)
if "Error" not in latest and "Exception" not in latest:
bot_message = "No clear error found. What should I fix?"
new_workflow = "reviewing_logs"
else:
bot_message = "Generating a fix based on logs..."
new_workflow = "debugging"
elif "reset" in message.lower():
bot_message = "Workflow reset."
new_repo_id = None
updated_preview = "<p>No Space created yet.</p>"
updated_container = ""
updated_build = ""
new_workflow = "idle"
else:
bot_message = "Command not recognized. Try 'create', 'check logs', 'generate fix', or 'reset'."
except Exception as e:
bot_message = f"Unexpected error: {e}"
new_workflow = "idle"
if history and history[-1][1] is None:
history[-1][1] = bot_message
else:
history.append([None, bot_message])
return history, new_repo_id, new_workflow, updated_preview, updated_container, updated_build
# --- Build the Gradio UI ---
with gr.Blocks(title="AI-Powered HF Space App Builder") as ai_builder_tab:
hf_profile = gr.State(None)
hf_token = gr.State(None)
gemini_key = gr.State(None)
gemini_model = gr.State("gemini-2.5-pro-preview-03-25")
repo_id = gr.State(None)
workflow = gr.State("idle")
sdk_state = gr.State("gradio")
with gr.Row():
# Sidebar
with gr.Column(scale=1, min_width=300):
gr.Markdown("## Hugging Face Login")
login_status = gr.Markdown("*Not logged in.*")
login_btn = gr.LoginButton(variant="huggingface")
ai_builder_tab.load(show_profile, outputs=login_status)
login_btn.click(show_profile, outputs=login_status)
login_btn.click(lambda p, t: (p, t), outputs=[hf_profile, hf_token])
gr.Markdown("## Google AI Studio API Key")
gemini_input = gr.Textbox(label="API Key", type="password")
gemini_status = gr.Markdown("")
gemini_input.change(lambda k: k, inputs=gemini_input, outputs=gemini_key)
gr.Markdown("## Gemini Model")
model_selector = gr.Radio(
choices=[
("Gemini 2.5 Flash Preview 04-17", "gemini-2.5-flash-preview-04-17"),
("Gemini 2.5 Pro Preview 03-25", "gemini-2.5-pro-preview-03-25")
],
value="gemini-2.5-pro-preview-03-25",
label="Select model"
)
model_selector.change(lambda m: m, inputs=model_selector, outputs=gemini_model)
# configure Gemini on key or model change
ai_builder_tab.load(
configure_gemini,
inputs=[gemini_key, gemini_model],
outputs=[gemini_status]
)
gemini_input.change(
configure_gemini,
inputs=[gemini_key, gemini_model],
outputs=[gemini_status]
)
model_selector.change(
configure_gemini,
inputs=[gemini_key, gemini_model],
outputs=[gemini_status]
)
gr.Markdown("## Space SDK")
sdk_selector = gr.Radio(choices=["gradio","streamlit"], value="gradio", label="Template SDK")
sdk_selector.change(lambda s: s, inputs=sdk_selector, outputs=sdk_state)
# Main content
with gr.Column(scale=3):
chatbot = gr.Chatbot()
user_input = gr.Textbox(placeholder="Type your message…")
send_btn = gr.Button("Send", interactive=False)
ai_builder_tab.load(
lambda p, k, m: gr.update(interactive=bool(p and k and m)),
inputs=[hf_profile, gemini_key, gemini_model],
outputs=[send_btn]
)
login_btn.click(
lambda p, k, m: gr.update(interactive=bool(p and k and m)),
inputs=[hf_profile, gemini_key, gemini_model],
outputs=[send_btn]
)
gemini_input.change(
lambda p, k, m: gr.update(interactive=bool(p and k and m)),
inputs=[hf_profile, gemini_key, gemini_model],
outputs=[send_btn]
)
model_selector.change(
lambda p, k, m: gr.update(interactive=bool(p and k and m)),
inputs=[hf_profile, gemini_key, gemini_model],
outputs=[send_btn]
)
iframe = gr.HTML("<p>No Space created yet.</p>")
build_txt = gr.Textbox(label="Build Logs", lines=10, interactive=False)
run_txt = gr.Textbox(label="Container Logs", lines=10, interactive=False)
def wrap_chat(msg, history, prof, tok, key, model, rid, wf, sdk, prev, run_l, build_l):
new_hist, new_rid, new_wf, new_prev, new_run, new_build = ai_workflow_chat(
msg, history, prof, tok, key, model, rid, wf, sdk, prev, run_l, build_l
)
return [(u or "", v or "") for u, v in new_hist], new_rid, new_wf, new_prev, new_run, new_build
send_btn.click(
wrap_chat,
inputs=[
user_input, chatbot,
hf_profile, hf_token,
gemini_key, gemini_model,
repo_id, workflow, sdk_state,
iframe, run_txt, build_txt
],
outputs=[
chatbot,
repo_id, workflow,
iframe, run_txt, build_txt
]
)
with gr.Blocks(title="Manual Hugging Face Space Manager") as manual_control_tab:
manual_profile = gr.State(None)
manual_token = gr.State(None)
manual_repo = gr.State(None)
gr.Markdown("## Manual Sign-In & Space Management")
manual_login_btn = gr.LoginButton(variant="huggingface", size="lg")
manual_status = gr.Markdown("*Not logged in.*")
manual_models = gr.Markdown()
manual_control_tab.load(show_profile, outputs=manual_status)
manual_login_btn.click(show_profile, outputs=manual_status)
manual_control_tab.load(list_private_models, outputs=manual_models)
manual_login_btn.click(list_private_models, outputs=manual_models)
manual_login_btn.click(lambda p, t: (p, t), outputs=[manual_profile, manual_token])
manual_repo_name = gr.Textbox(label="New Space name", placeholder="my-space")
manual_sdk_sel = gr.Radio(choices=["gradio","streamlit"], value="gradio", label="Template SDK")
manual_create_btn = gr.Button("Create Space", interactive=False)
manual_create_logs = gr.Textbox(label="Create Logs", lines=3, interactive=False)
manual_preview = gr.HTML("<p>No Space created yet.</p>")
manual_control_tab.load(
lambda p, t: gr.update(interactive=bool(p and t)),
inputs=[manual_profile, manual_token],
outputs=[manual_create_btn]
)
manual_login_btn.click(
lambda p, t: gr.update(interactive=bool(p and t)),
inputs=[manual_profile, manual_token],
outputs=[manual_create_btn]
)
manual_create_btn.click(
create_space_action,
inputs=[manual_repo_name, manual_sdk_sel, manual_profile, manual_token],
outputs=[manual_repo, manual_preview]
).then(lambda _: "", outputs=[manual_create_logs])
manual_path = gr.Textbox(label="Path in Space", value="app.py")
manual_file = gr.File(label="Select file")
manual_up_btn = gr.Button("Upload File", interactive=False)
manual_up_log = gr.Textbox(label="Upload Logs", lines=2, interactive=False)
manual_control_tab.load(
lambda rid, p, t: gr.update(interactive=bool(rid and p and t)),
inputs=[manual_repo, manual_profile, manual_token],
outputs=[manual_up_btn]
)
manual_login_btn.click(
lambda rid, p, t: gr.update(interactive=bool(rid and p and t)),
inputs=[manual_repo, manual_profile, manual_token],
outputs=[manual_up_btn]
)
manual_up_btn.click(
upload_file_to_space_action,
inputs=[manual_file, manual_path, manual_repo, manual_profile, manual_token],
outputs=[manual_up_log]
)
manual_build_btn = gr.Button("Fetch Build Logs", interactive=False)
manual_container_btn = gr.Button("Fetch Container Logs", interactive=False)
manual_build_txt = gr.Textbox(label="Build Logs", lines=10, interactive=False)
manual_container_txt = gr.Textbox(label="Container Logs", lines=10, interactive=False)
for btn in (manual_build_btn, manual_container_btn):
manual_control_tab.load(
lambda rid, p, t: gr.update(interactive=bool(rid and p and t)),
inputs=[manual_repo, manual_profile, manual_token],
outputs=[btn]
)
manual_login_btn.click(
lambda rid, p, t: gr.update(interactive=bool(rid and p and t)),
inputs=[manual_repo, manual_profile, manual_token],
outputs=[btn]
)
manual_build_btn.click(
get_build_logs_action,
inputs=[manual_repo, manual_profile, manual_token],
outputs=[manual_build_txt]
)
manual_container_btn.click(
get_container_logs_action,
inputs=[manual_repo, manual_profile, manual_token],
outputs=[manual_container_txt]
)
demo = gr.TabbedInterface(
[ai_builder_tab, manual_control_tab],
["AI App Builder", "Manual Control"]
)
if __name__ == "__main__":
demo.launch()
|