File size: 94,949 Bytes
a0f57d6
3290861
a0f57d6
4eff17c
3290861
a0f57d6
b8c1a3d
 
a0f57d6
 
 
cfa8219
a0f57d6
 
6146397
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c46f34
7f04c4f
8756ea3
 
 
 
 
 
 
ce8cbe4
8756ea3
 
 
 
 
 
b8c1a3d
 
7f04c4f
a0f57d6
0df9635
4eff17c
2528f91
4eff17c
 
 
5d26448
b8c1a3d
9053015
 
 
 
2528f91
9053015
fb9266f
a0f57d6
 
 
9053015
a0f57d6
 
 
b8c1a3d
a0f57d6
5d26448
b8c1a3d
2528f91
 
b8c1a3d
2528f91
4eff17c
dbd6fa0
b8c1a3d
dbd6fa0
 
 
2528f91
dbd6fa0
 
 
 
0dfd0d1
b8c1a3d
dbd6fa0
 
b8c1a3d
 
 
 
 
4eff17c
a0f57d6
2528f91
4eff17c
 
a0f57d6
 
5262349
b8c1a3d
a0f57d6
dbd6fa0
a0f57d6
b8c1a3d
a0f57d6
 
 
 
 
 
 
b8c1a3d
a0f57d6
b8c1a3d
 
 
 
 
599725a
a0f57d6
2528f91
dbd6fa0
b8c1a3d
 
a0f57d6
dbd6fa0
b8c1a3d
 
2528f91
cfa8219
dbd6fa0
 
2528f91
5cac637
dbd6fa0
 
2528f91
dbd6fa0
 
2528f91
dbd6fa0
 
 
 
cfa8219
 
dbd6fa0
 
 
 
2528f91
b8c1a3d
dbd6fa0
b8c1a3d
 
 
dbd6fa0
b8c1a3d
 
 
 
 
cfa8219
dbd6fa0
0df9635
a0f57d6
2528f91
a0f57d6
5262349
2528f91
5cac637
a0f57d6
70dd0f7
a0f57d6
2528f91
a0f57d6
5262349
2528f91
5cac637
a0f57d6
 
 
cfa8219
e8459e6
 
2528f91
373e394
b8c1a3d
 
cfa8219
ce8cbe4
 
b8c1a3d
ce8cbe4
a0f57d6
b8c1a3d
a0f57d6
2528f91
 
5262349
0dfd0d1
b8c1a3d
ce8cbe4
a0f57d6
0dfd0d1
b8c1a3d
 
cfa8219
a0f57d6
8756ea3
 
ce8cbe4
8756ea3
 
 
 
cfa8219
 
b8c1a3d
 
 
 
 
 
dbd6fa0
b8c1a3d
 
5262349
cfa8219
 
 
 
 
b8c1a3d
 
 
cfa8219
b8c1a3d
cfa8219
b8c1a3d
cfa8219
b8c1a3d
cfa8219
f106b2a
 
b8c1a3d
f106b2a
 
b8c1a3d
f106b2a
 
b8c1a3d
 
 
cfa8219
dbd6fa0
b8c1a3d
2528f91
b8c1a3d
dbd6fa0
 
 
 
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd6fa0
2528f91
dbd6fa0
b8c1a3d
5262349
b8c1a3d
 
 
 
 
a0f57d6
934dfd0
b8c1a3d
 
934dfd0
 
b8c1a3d
b0ecca0
b8c1a3d
 
 
 
 
 
 
32f88a6
b0ecca0
b8c1a3d
 
 
 
5262fe7
851efc4
b8c1a3d
 
5262fe7
d1b242d
b8c1a3d
 
 
 
 
 
 
 
 
 
 
32f88a6
 
 
 
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5262fe7
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f88a6
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1b242d
934dfd0
2528f91
ce8cbe4
a0f57d6
 
b8c1a3d
a0f57d6
 
1dbd40f
851efc4
 
dbd6fa0
b8c1a3d
a0f57d6
d4653f4
 
 
 
dbd6fa0
5262349
 
 
d4653f4
bca1246
 
 
b8c1a3d
2528f91
 
 
 
b8c1a3d
dbd6fa0
 
 
 
 
5262349
b8c1a3d
851efc4
 
 
b8c1a3d
 
 
dbd6fa0
2528f91
5262349
 
 
 
b8c1a3d
 
5262349
2528f91
 
d4653f4
b8c1a3d
 
 
 
 
 
e8459e6
6dbcd3a
b8c1a3d
 
 
 
 
 
 
32f88a6
 
 
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
2528f91
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd6fa0
 
 
2528f91
b8c1a3d
 
0596125
5262349
b8c1a3d
 
cb1b9d8
b8c1a3d
 
 
 
 
 
0596125
 
a0f57d6
 
 
2528f91
6dbcd3a
 
851efc4
8756ea3
851efc4
2528f91
b8c1a3d
2528f91
 
 
 
 
cfa8219
a0f57d6
851efc4
a0f57d6
 
 
 
 
dbd6fa0
cfa8219
2528f91
b8c1a3d
 
2528f91
b8c1a3d
 
2528f91
b8c1a3d
dbd6fa0
e8459e6
8756ea3
b8c1a3d
dbd6fa0
5262349
e8459e6
 
8756ea3
 
d4653f4
 
b8c1a3d
d4653f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8c1a3d
d1b242d
d4653f4
b8c1a3d
 
 
d4653f4
 
b8c1a3d
49af09b
b8c1a3d
 
 
14c3932
bca1246
b8c1a3d
 
32f88a6
 
 
 
 
 
b8c1a3d
 
 
 
 
 
 
 
 
ce8cbe4
 
 
 
bca1246
 
b8c1a3d
 
 
ce8cbe4
bca1246
14c3932
b8c1a3d
ce8cbe4
b8c1a3d
 
14c3932
8756ea3
b8c1a3d
 
 
bca1246
e5dc606
bca1246
b8c1a3d
14c3932
bca1246
14c3932
b8c1a3d
ce8cbe4
b8c1a3d
 
8756ea3
 
b8c1a3d
 
 
bca1246
8756ea3
bca1246
14c3932
8756ea3
b8c1a3d
 
 
bca1246
e5dc606
bca1246
b8c1a3d
14c3932
 
 
 
b8c1a3d
14c3932
 
 
 
b8c1a3d
14c3932
 
 
b8c1a3d
 
 
 
 
14c3932
 
b8c1a3d
 
 
 
 
14c3932
 
e5dc606
ce8cbe4
 
 
 
 
 
b8c1a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c3932
b8c1a3d
 
 
14c3932
 
b8c1a3d
14c3932
b8c1a3d
14c3932
a0f57d6
0596125
b8c1a3d
f106b2a
 
49af09b
b8c1a3d
 
 
 
bca1246
b8c1a3d
934dfd0
e5dc606
bca1246
b8c1a3d
bca1246
e5dc606
b8c1a3d
910909f
 
bca1246
b8c1a3d
 
 
 
910909f
8756ea3
bca1246
b8c1a3d
bca1246
8756ea3
b8c1a3d
8756ea3
 
bca1246
b8c1a3d
bca1246
e5dc606
b8c1a3d
910909f
f106b2a
 
934dfd0
f106b2a
 
dbd6fa0
4eff17c
2528f91
 
 
b8c1a3d
2528f91
b8c1a3d
2528f91
f106b2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
import os
import re
import time
import json
import io
import requests
import logging
from typing import List, Dict, Any, Tuple, Optional, Literal, Generator

import gradio as gr
import google.generativeai as genai
from google.generativeai import types # Import types for configuration and tools

from huggingface_hub import create_repo, list_models, upload_file, constants
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry


# --- Configure Logging ---
# Replace print() statements with logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# You could add a file handler here for persistent logs if needed, but console is fine for Spaces


# --- Configure Hugging Face API Retries ---
# Added retry strategy to make HF API calls more robust to transient errors
retry_strategy = Retry(total=5, backoff_factor=1, status_forcelist=[429, 500, 502, 503, 504]) # Define retry strategy for specific HTTP codes
adapter = HTTPAdapter(max_retries=retry_strategy)
session = get_session() # Get the session object used internally by huggingface_hub
session.mount("http://", adapter)
session.mount("https://", adapter)


# --- Define Gemini Model Information ---
GEMINI_MODELS = {
    "gemini-1.5-flash": ("Gemini 1.5 Flash", "Fast and versatile performance across a diverse variety of tasks."),
    "gemini-1.5-pro": ("Gemini 1.5 Pro", "Complex reasoning tasks requiring more intelligence."),
    "gemini-1.5-flash-8b": ("Gemini 1.5 Flash 8B", "High volume and lower intelligence tasks."),
    "gemini-2.0-flash": ("Gemini 2.0 Flash", "Next generation features, speed, thinking, realtime streaming, and multimodal generation."),
    "gemini-2.0-flash-lite": ("Gemini 2.0 Flash-Lite", "Cost efficiency and low latency."),
    # Note: Preview models might have shorter lifespans or different capabilities. Uncomment if you want to include them.
    # "gemini-2.5-flash-preview-04-17": ("Gemini 2.5 Flash Preview (04-17)", "Adaptive thinking, cost efficiency."),
    # "gemini-2.5-pro-preview-03-25": ("Gemini 2.5 Pro Preview (03-25)", "Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more."),
}

# Create the list of choices for the Gradio Radio component
GEMINI_MODEL_CHOICES = [(display_name, internal_name) for internal_name, (display_name, description) in GEMINI_MODELS.items()]
DEFAULT_GEMINI_MODEL = "gemini-1.5-flash"


# --- Helper functions for Hugging Face integration ---

def show_profile(profile: gr.OAuthProfile | None) -> str:
    """Displays the logged-in Hugging Face profile username."""
    if profile is None:
        return "*Not logged in.*"
    return f"✅ Logged in as **{profile.username}**"

# list_private_models function is not used in the main workflow, kept as is.
def list_private_models(
    profile: gr.OAuthProfile | None,
    oauth_token: gr.OAuthToken | None
) -> str:
    """Lists private models for the logged-in user (not used in the main workflow, but kept)."""
    if profile is None or oauth_token is None:
        return "Please log in to see your models."
    try:
        models = [
            f"{m.id} ({'private' if m.private else 'public'})"
            for m in list_models(author=profile.username, token=oauth_token.token)
        ]
        return "No models found." if not models else "Models:\n\n" + "\n - ".join(models)
    except Exception as e:
        logging.error(f"Error listing models: {e}")
        return f"Error listing models: {e}"

def create_space_action(repo_name: str, sdk: str, profile: gr.OAuthProfile, token: gr.OAuthToken) -> Tuple[str, str]:
    """Creates a new Hugging Face Space repository."""
    if not profile or not token:
        # This should ideally not happen if button logic is correct, but kept as safeguard
        raise ValueError("Hugging Face profile or token is missing.")
    repo_id = f"{profile.username}/{repo_name}"
    try:
        logging.info(f"Attempting to create Space: {repo_id} with SDK: {sdk}")
        create_repo(
            repo_id=repo_id,
            token=token.token,
            exist_ok=True, # Allow creating if it already exists
            repo_type="space",
            space_sdk=sdk
        )
        url    = f"https://huggingface.co/spaces/{repo_id}"
        iframe = f'<iframe src="{url}" width="100%" height="500px"></iframe>'
        logging.info(f"Successfully created/verified Space: {repo_id}")
        return repo_id, iframe
    except Exception as e:
        logging.error(f"Failed to create Space {repo_id}: {e}")
        # Catch specific HTTP errors from huggingface_hub if possible
        if isinstance(e, requests.exceptions.HTTPError):
            raise RuntimeError(f"HF API Error creating Space `{repo_id}`: {e.response.status_code} {e.response.reason}") from e
        raise RuntimeError(f"Failed to create Space `{repo_id}`: {e}") from e # Re-raise as RuntimeError

def upload_file_to_space_action(
    file_obj: io.StringIO, # Specify type hint for clarity
    path_in_repo: str,
    repo_id: str,
    profile: gr.OAuthProfile,
    token: gr.OAuthToken
) -> None:
    """Uploads a file to a Hugging Face Space repository."""
    if not (profile and token and repo_id):
        raise ValueError("Hugging Face profile, token, or repo_id is missing.")
    try:
        logging.info(f"Attempting to upload file: {path_in_repo} to Space: {repo_id}")
        upload_file(
            path_or_fileobj=file_obj,
            path_in_repo=path_in_repo,
            repo_id=repo_id,
            token=token.token,
            repo_type="space"
        )
        logging.info(f"Successfully uploaded file: {path_in_repo} to Space: {repo_id}")
    except Exception as e:
        logging.error(f"Failed to upload {path_in_repo} to {repo_id}: {e}")
        if isinstance(e, requests.exceptions.HTTPError):
             raise RuntimeError(f"HF API Error uploading {path_in_repo} to `{repo_id}`: {e.response.status_code} {e.response.reason}") from e
        raise RuntimeError(f"Failed to upload `{path_in_repo}` to `{repo_id}`: {e}") from e


def _fetch_space_logs_level(repo_id: str, level: str, token: str) -> str:
    """Fetches build or run logs for a Space."""
    if not repo_id or not token:
         logging.warning(f"Cannot fetch {level} logs: repo_id or token missing.")
         return f"Cannot fetch {level} logs: log in and create a Space first."
    jwt_url  = f"{constants.ENDPOINT}/api/spaces/{repo_id}/jwt"
    try:
        logging.info(f"Attempting to fetch {level} logs for Space: {repo_id}")
        r = get_session().get(jwt_url, headers=build_hf_headers(token=token), timeout=10) # Added timeout
        hf_raise_for_status(r) # Raise HTTPError for bad responses (4xx or 5xx)
        jwt = r.json()["token"]
        logs_url = f"https://api.hf.space/v1/{repo_id}/logs/{level}"
        lines, count = [], 0
        # Using stream=True is good for potentially large logs
        with get_session().get(logs_url, headers=build_hf_headers(token=jwt), stream=True, timeout=30) as resp:
            hf_raise_for_status(resp)
            for raw in resp.iter_lines():
                if count >= 200: # Limit output lines to prevent UI overload
                    lines.append("... truncated ...")
                    break
                if not raw.startswith(b"data: "): # EventStream protocol expected from HF logs API
                    continue
                payload = raw[len(b"data: "):]
                try:
                    event = json.loads(payload.decode())
                    ts = event.get("timestamp", "")
                    txt = event.get("data", "").strip()
                    if txt:
                        lines.append(f"[{ts}] {txt}")
                        count += 1
                except json.JSONDecodeError:
                    # Skip lines that aren't valid JSON events
                    logging.warning(f"Skipping non-JSON log line for {repo_id} ({level}): {payload.decode()}")
                    continue
        log_output = "\n".join(lines) if lines else f"No {level} logs found."
        logging.info(f"Successfully fetched {count} {level} log lines for {repo_id}")
        return log_output
    except Exception as e:
        logging.error(f"Error fetching {level} logs for {repo_id}: {e}")
        if isinstance(e, requests.exceptions.HTTPError):
             return f"Error fetching {level} logs for `{repo_id}`: {e.response.status_code} {e.response.reason}"
        if isinstance(e, requests.exceptions.Timeout):
             return f"Timeout fetching {level} logs for `{repo_id}`. Space might be starting slowly."
        return f"Error fetching {level} logs for `{repo_id}`: {e}"


def get_build_logs_action(repo_id, profile, token):
    """Action to fetch build logs with a small delay."""
    if not (repo_id and profile and token):
        return "⚠️ Cannot fetch build logs: log in and create a Space first."
    # Small delay to allow build process to potentially start on HF side
    time.sleep(5)
    return _fetch_space_logs_level(repo_id, "build", token.token)

def get_container_logs_action(repo_id, profile, token):
    """Action to fetch container logs with a delay."""
    if not (repo_id and profile and token):
        return "⚠️ Cannot fetch container logs: log in and create a Space first."
    # Longer delay to allow container to start after build completes
    time.sleep(10)
    return _fetch_space_logs_level(repo_id, "run", token.token)


# --- Google Gemini integration with model selection and grounding ---

def configure_gemini(api_key: str | None, model_name: str | None) -> str:
    """Configures the Gemini API and checks if the model is accessible."""
    # Check for empty string "" as well as None
    if not isinstance(api_key, str) or not api_key.strip():
        logging.info("Gemini API key is not set.")
        return "⚠️ Gemini API key is not set."
    # Check if model_name is None or not a valid key in GEMINI_MODELS
    if not model_name or model_name not in GEMINI_MODELS:
        logging.warning(f"Invalid Gemini model selected: {model_name}")
        return "⚠️ Please select a valid Gemini model."
    try:
        logging.info(f"Attempting to configure Gemini with model: {model_name}")
        genai.configure(api_key=api_key)
        # Attempt a simple call to verify credentials and model availability
        # This will raise an exception if the key is invalid or model not found
        genai.GenerativeModel(model_name).generate_content("ping", stream=False)
        # This message indicates the API call *for configuration check* was successful
        logging.info(f"Gemini configured successfully with model: {model_name}")
        return f"✅ Gemini configured successfully with **{GEMINI_MODELS[model_name][0]}**."
    except Exception as e:
        # This message indicates the API call *for configuration check* failed
        logging.error(f"Error configuring Gemini with model {model_name}: {e}")
        # Catch specific Gemini errors if possible (e.g., authentication errors)
        return f"❌ Error configuring Gemini: {e}"

def get_model_description(model_name: str | None) -> str:
    """Retrieves the description for a given model name."""
    if model_name is None or model_name not in GEMINI_MODELS:
        return "Select a model to see its description."
    return GEMINI_MODELS.get(model_name, (model_name, "No description available."))[1]


def call_gemini(prompt: str, api_key: str, model_name: str, use_grounding: bool = False) -> str:
    """Calls the Gemini API with a given prompt, optionally using grounding."""
    # These checks are crucial - they will raise an error *before* the API call if prereqs aren't met
    if not isinstance(api_key, str) or not api_key.strip():
        raise ValueError("Gemini API key is empty or invalid.")
    if not model_name or model_name not in GEMINI_MODELS:
         raise ValueError(f"Gemini model '{model_name}' is invalid or not selected.")

    try:
        logging.info(f"Calling Gemini model '{model_name}' (Grounding: {use_grounding}) with prompt (first 50 chars): '{prompt[:50]}...'")
        genai.configure(api_key=api_key) # Re-configure just in case
        model = genai.GenerativeModel(model_name)

        tools_config = [types.Tool(google_search=types.GoogleSearch())] if use_grounding else None

        response = model.generate_content(
            prompt,
            stream=False, # Using stream=False for simplicity in this workflow
            tools=tools_config,
            request_options={'timeout': 120} # Added timeout for API call
        )

        if response.prompt_feedback and response.prompt_feedback.block_reason:
             logging.warning(f"Gemini API call blocked: {response.prompt_feedback.block_reason}")
             raise RuntimeError(f"Gemini API call blocked: {response.prompt_feedback.block_reason}")

        if not response.candidates:
             if response.prompt_feedback and response.prompt_feedback.safety_ratings:
                  ratings = "; ".join([f"{r.category}: {r.probability}" for r in response.prompt_feedback.safety_ratings])
                  logging.warning(f"Gemini API call returned no candidates. Safety ratings: {ratings}")
                  raise RuntimeError(f"Gemini API call returned no candidates. Safety ratings: {ratings}")
             else:
                  logging.warning("Gemini API call returned no candidates.")
                  raise RuntimeError("Gemini API call returned no candidates.")

        generated_text = response.text or ""
        logging.info(f"Gemini API call successful. Generated text length: {len(generated_text)}")
        return generated_text

    except Exception as e:
        logging.error(f"Gemini API call failed: {e}")
        # Re-raising as RuntimeError for the workflow to catch and manage
        raise RuntimeError(f"Gemini API call failed: {e}") from e


# --- AI workflow logic (State Machine) ---

# Define States for the workflow using Literal for type safety
WorkflowState = Literal[
    "idle", "awaiting_repo_name", "creating_space", "generating_code",
    "uploading_app_py", "generating_requirements", "uploading_requirements",
    "generating_readme", "uploading_readme", "checking_logs_build",
    "checking_logs_run", "debugging_code", "uploading_fixed_app_py", "complete"
]

STATE_IDLE: WorkflowState = "idle"
STATE_AWAITING_REPO_NAME: WorkflowState = "awaiting_repo_name"
STATE_CREATING_SPACE: WorkflowState = "creating_space"
STATE_GENERATING_CODE: WorkflowState = "generating_code"
STATE_UPLOADING_APP_PY: WorkflowState = "uploading_app_py"
STATE_GENERATING_REQUIREMENTS: WorkflowState = "generating_requirements"
STATE_UPLOADING_REQUIREMENTS: WorkflowState = "uploading_requirements"
STATE_GENERATING_README: WorkflowState = "generating_readme"
STATE_UPLOADING_README: WorkflowState = "uploading_readme"
STATE_CHECKING_LOGS_BUILD: WorkflowState = "checking_logs_build"
STATE_CHECKING_LOGS_RUN: WorkflowState = "checking_logs_run"
STATE_DEBUGGING_CODE: WorkflowState = "debugging_code"
STATE_UPLOADING_FIXED_APP_PY: WorkflowState = "uploading_fixed_app_py"
STATE_COMPLETE: WorkflowState = "complete"

MAX_DEBUG_ATTEMPTS = 3 # Limit the number of automatic debug attempts

# Helper function to add a new assistant message to the chatbot history.
def add_bot_message(history: list[dict], bot_message: str) -> list[dict]:
    # Make a copy to avoid modifying history in place if needed later, though generator pattern usually handles this
    new_history = list(history)
    new_history.append({"role": "assistant", "content": bot_message})
    logging.info(f"Added bot message: {bot_message[:100]}...")
    return new_history

# Add an initial welcome message to the chatbot (defined outside Blocks to be called by load chain)
def greet() -> List[Dict[str, str]]:
    logging.info("Generating initial welcome message.")
    return [{"role": "assistant", "content": "Welcome! Please log in to Hugging Face and provide your Google AI Studio API key to start building Spaces. Once ready, type 'generate me a gradio app called myapp' or 'create' to begin."}]


# Helper function to update send button interactivity based on prereqs
# This function has the clean signature it expects.
def check_send_button_ready(
    hf_profile: gr.OAuthProfile | None,
    hf_token: gr.OAuthToken | None,
    gemini_key: str | None,
    gemini_model: str | None,
    workflow_state: WorkflowState # Also depend on workflow state
) -> gr.update: # Correct type hint for a Gradio update object
    """Checks if HF login and Gemini configuration are complete and returns update for button interactivity."""
    # Button should NOT be interactive when workflow is running
    if workflow_state != STATE_IDLE and workflow_state != STATE_AWAITING_REPO_NAME:
         logging.debug(f"check_send_button_ready: Workflow state is {workflow_state}, disabling button.")
         return gr.Button.update(interactive=False)

    is_logged_in    = hf_profile is not None and hf_token is not None
    # Use strip() to handle cases where key is just whitespace
    is_gemini_ready = isinstance(gemini_key, str) and bool(gemini_key.strip()) and bool(gemini_model)

    is_ready = is_logged_in and is_gemini_ready
    logging.debug(f"check_send_button_ready - HF Ready: {is_logged_in}, Gemini Ready: {is_gemini_ready}, Button Ready: {is_ready}")

    # Button is interactive only in IDLE or AWAITING_REPO_NAME states AND when prereqs are met
    return gr.Button.update(interactive=is_ready and (workflow_state == STATE_IDLE or workflow_state == STATE_AWAITING_REPO_NAME))


# --- State Handler Functions ---
# These functions encapsulate the logic for each state.
# They take all necessary inputs from the main generator's arguments
# and return the full tuple of outputs required by the generator's yield signature.

# Using Any for handler return type simplifies type hints since some yield and some return
# A more precise type would be Union[WorkflowOutputs, Generator[WorkflowOutputs, None, WorkflowOutputs]]
# But Gradio's type checking for generators is often loose anyway.
WorkflowHandlerReturn = Any


def package_workflow_outputs(
    history: List[Dict[str, str]],
    repo_id: Optional[str],
    state: WorkflowState,
    updated_preview: str,
    updated_run: str,
    updated_build: str,
    attempts: int,
    app_desc: Optional[str],
    repo_name: Optional[str],
    generated_code: Optional[str],
    use_grounding: bool,
    current_gemini_key: Optional[str], # Explicitly include these
    current_gemini_model: Optional[str] # Explicitly include these
) -> WorkflowOutputs:
     """Helper to package all workflow state and UI outputs into the required tuple."""
     return (history, repo_id, state, updated_preview, updated_run, updated_build,
             attempts, app_desc, repo_name, generated_code, use_grounding,
             current_gemini_key, current_gemini_model)


def handle_idle(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_IDLE
    space_sdk:      str,
    preview_html:   str,
    container_logs: str,
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None,
    use_grounding: bool,
    *args, # Catch potential extra args
    **kwargs # Catch potential extra kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the IDLE state."""
    logging.info(f"Handling STATE_IDLE with message: {message[:50]}...")

    reset_match = "reset" in message.lower()
    generate_match = re.search(r'generate (?:me )?(?:a|an) (.+) app called (\w+)', message, re.I)
    create_match = re.search(r'create (?:a|an)? space called (\w+)', message, re.I) # Simple create command

    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    if reset_match:
        logging.info("Reset command received.")
        history = add_bot_message(history, "Workflow reset.")
        # Reset relevant states and UI outputs
        return package_workflow_outputs(
            history=history, repo_id=None, state=STATE_IDLE,
            updated_preview="<p>No Space created yet.</p>", updated_run="", updated_build="",
            attempts=0, app_desc=None, repo_name=None, generated_code=None,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )

    elif generate_match:
        logging.info("Generate command received.")
        new_app_desc = generate_match.group(1).strip() # Capture description part
        new_repo_name = generate_match.group(2).strip() # Capture name part
        # Perform basic validation on repo name format
        if not new_repo_name or re.search(r'[^a-zA-Z0-9_-]', new_repo_name) or len(new_repo_name) > 100:
             logging.warning(f"Invalid repo name format received: {new_repo_name}")
             history = add_bot_message(history, "Invalid name. Please provide a single word/slug for the Space name (letters, numbers, underscores, hyphens only, max 100 chars).")
             # Stay in IDLE and yield message
             return package_workflow_outputs(
                history=history, repo_id=repo_id, state=STATE_IDLE,
                updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
                attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
             )

        history = add_bot_message(history, f"Acknowledged: '{message}'. Starting workflow to create Space `{hf_profile.username}/{new_repo_name}` for a '{new_app_desc}' app.")
        logging.info(f"Transitioning to STATE_CREATING_SPACE for repo '{new_repo_name}' and description '{new_app_desc}'")
        # Update state variables for the next step
        return package_workflow_outputs(
            history=history, repo_id=repo_id, state=STATE_CREATING_SPACE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=0, app_desc=new_app_desc, repo_name=new_repo_name, generated_code=None, # Reset attempts and generated_code
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )

    elif create_match:
        logging.info("Simple create command received.")
        new_repo_name = create_match.group(1).strip()
        # Perform basic validation on repo name format
        if not new_repo_name or re.search(r'[^a-zA-Z0-9_-]', new_repo_name) or len(new_repo_name) > 100:
             logging.warning(f"Invalid repo name format received: {new_repo_name}")
             history = add_bot_message(history, "Invalid name. Please provide a single word/slug for the Space name (letters, numbers, underscores, hyphens only, max 100 chars).")
             # Stay in IDLE and yield message
             return package_workflow_outputs(
                history=history, repo_id=repo_id, state=STATE_IDLE,
                updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
                attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
             )

        history = add_bot_message(history, f"Acknowledged: '{message}'. Starting workflow to create Space `{hf_profile.username}/{new_repo_name}`.")
        logging.info(f"Transitioning to STATE_CREATING_SPACE for repo '{new_repo_name}'")
        return package_workflow_outputs(
            history=history, repo_id=repo_id, state=STATE_CREATING_SPACE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=0, app_desc=app_description, repo_name=new_repo_name, generated_code=None, # Reset attempts and generated_code
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )

    elif "create" in message.lower() and not repo_id:
        logging.info("Create command without name received.")
        history = add_bot_message(history, "Okay, what should the Space be called? (e.g., `my-awesome-app`)")
        logging.info("Transitioning to STATE_AWAITING_REPO_NAME")
        return package_workflow_outputs(
            history=history, repo_id=repo_id, state=STATE_AWAITING_REPO_NAME,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )

    else:
        logging.info("Command not recognized in IDLE state.")
        history = add_bot_message(history, "Command not recognized. Try 'generate me a gradio app called myapp', or 'reset'.")
        # Stay in IDLE state
        return package_workflow_outputs(
            history=history, repo_id=repo_id, state=STATE_IDLE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )


def handle_awaiting_repo_name(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_AWAITING_REPO_NAME
    space_sdk:      str,
    preview_html:   str,
    container_logs: str,
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None,
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the AWAITING_REPO_NAME state."""
    logging.info(f"Handling STATE_AWAITING_REPO_NAME with message: {message[:50]}...")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    new_repo_name = message.strip()
    # Basic validation for Hugging Face repo name format
    # Allow letters, numbers, hyphens, underscores, max 100 chars (HF limit check)
    if not new_repo_name or re.search(r'[^a-zA-Z0-9_-]', new_repo_name) or len(new_repo_name) > 100:
        logging.warning(f"Invalid repo name format received while awaiting name: {new_repo_name}")
        history = add_bot_message(history, "Invalid name. Please provide a single word/slug for the Space name (letters, numbers, underscores, hyphens only, max 100 chars).")
        # Stay in AWAITING_REPO_NAME state
        return package_workflow_outputs(
            history=history, repo_id=repo_id, state=STATE_AWAITING_REPO_NAME,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )
    else:
        history = add_bot_message(history, f"Using Space name `{new_repo_name}`. Creating Space `{hf_profile.username}/{new_repo_name}`...")
        logging.info(f"Validated repo name '{new_repo_name}'. Transitioning to STATE_CREATING_SPACE.")
        # Transition state to creation
        return package_workflow_outputs(
            history=history, repo_id=repo_id, state=STATE_CREATING_SPACE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=0, app_desc=app_description, repo_name=new_repo_name, generated_code=None, # Reset attempts and generated_code
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )


def handle_creating_space(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_CREATING_SPACE
    space_sdk:      str,
    preview_html:   str,
    container_logs: str,
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None,
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the CREATING_SPACE state."""
    logging.info(f"Handling STATE_CREATING_SPACE for repo '{repo_name}'")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    # Ensure repo_name is available (it should have been set in the previous step)
    if not repo_name:
        logging.error("Internal error: Repo name missing in STATE_CREATING_SPACE. Resetting.")
        history = add_bot_message(history, "Internal error: Repo name missing for creation. Resetting.")
        # Reset state on error
        return package_workflow_outputs(
            history=history, repo_id=None, state=STATE_IDLE,
            updated_preview="<p>Error creating space.</p>", updated_run="", updated_build="",
            attempts=0, app_desc=None, repo_name=None, generated_code=None,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )
    else:
        try:
            new_repo_id, iframe_html = create_space_action(repo_name, space_sdk, hf_profile, hf_token)
            history = add_bot_message(history, f"✅ Space `{new_repo_id}` created. Click 'Send' to generate and upload code.")
            logging.info(f"Space '{new_repo_id}' created. Transitioning to STATE_GENERATING_CODE.")
            # Update state variables for the next step (generation)
            return package_workflow_outputs(
                history=history, repo_id=new_repo_id, state=STATE_GENERATING_CODE,
                updated_preview=iframe_html, updated_run=container_logs, updated_build=build_logs,
                attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
            )
        except RuntimeError as e: # Catch specific RuntimeErrors raised by actions
            logging.error(f"Caught RuntimeError creating space: {e}")
            history = add_bot_message(history, f"❌ Error creating space: {e}. Click 'reset'.")
            # Reset state on error
            return package_workflow_outputs(
                history=history, repo_id=None, state=STATE_IDLE,
                updated_preview="<p>Error creating space.</p>", updated_run="", updated_build="",
                attempts=0, app_desc=None, repo_name=None, generated_code=None,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
            )

def handle_generating_code(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_GENERATING_CODE
    space_sdk:      str,
    preview_html:   str,
    container_logs: str,
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None,
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the GENERATING_CODE state."""
    logging.info("Handling STATE_GENERATING_CODE")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    # Define the prompt for Gemini based on the app description or a default
    prompt_desc = app_description if app_description else f'a simple {space_sdk} app'
    prompt = f"""
You are an AI assistant specializing in Hugging Face Spaces using the {space_sdk} SDK.
Generate a full, single-file Python app based on:
'{prompt_desc}'
Ensure the code is runnable as `app.py` in a Hugging Face Space using the `{space_sdk}` SDK. Include necessary imports and setup.
Return **only** the python code block for `app.py`. Do not include any extra text, explanations, or markdown outside the code block.
"""
    try:
        history = add_bot_message(history, f"🧠 Generating `{prompt_desc}` `{space_sdk}` app (`app.py`) code with Gemini...")
        if use_grounding:
            history = add_bot_message(history, "(Using Grounding with Google Search)")
        # Yield message before API call to show immediate feedback
        # Use package_workflow_outputs to construct the tuple
        yield package_workflow_outputs(
            history=history, repo_id=repo_id, state=state,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )

        code = call_gemini(prompt, current_gemini_key, current_gemini_model, use_grounding=use_grounding)
        code = code.strip()
        # Clean up markdown code blocks
        code = re.sub(r'^```python\s*', '', code, flags=re.MULTILINE).strip()
        code = re.sub(r'^```\s*', '', code, flags=re.MULTILINE).strip() # Catch generic code blocks too
        code = re.sub(r'\s*```$', '', code, flags=re.MULTILINE).strip()


        if not code:
            logging.warning("Gemini returned empty code.")
            raise ValueError("Gemini returned empty code.")

        history = add_bot_message(history, "✅ `app.py` code generated. Click 'Send' to upload.")
        logging.info("Code generated. Transitioning to STATE_UPLOADING_APP_PY.")
        # Transition state and store generated code
        return package_workflow_outputs(
            history=history, repo_id=repo_id, state=STATE_UPLOADING_APP_PY,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )

    except RuntimeError as e: # Catch specific RuntimeErrors from call_gemini
        logging.error(f"Caught RuntimeError generating code: {e}")
        history = add_bot_message(history, f"❌ Error generating code: {e}. Click 'reset'.")
        # Reset state on error
        return package_workflow_outputs(
            history=history, repo_id=None, state=STATE_IDLE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=0, app_desc=None, repo_name=None, generated_code=None,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )


def handle_uploading_app_py(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_UPLOADING_APP_PY
    space_sdk:      str,
    preview_html:   str,
    container_logs: str,
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None, # This should hold the code to upload
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the UPLOADING_APP_PY state."""
    logging.info("Handling STATE_UPLOADING_APP_PY")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    # Retrieve the generated code from the state variable
    code_to_upload = generated_code
    if not code_to_upload:
         logging.error("Internal error: No code to upload in STATE_UPLOADING_APP_PY. Resetting.")
         history = add_bot_message(history, "Internal error: No code to upload. Resetting.")
         return package_workflow_outputs(
            history=history, repo_id=None, state=STATE_IDLE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=0, app_desc=None, repo_name=None, generated_code=None,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )
    else:
        history = add_bot_message(history, "☁️ Uploading `app.py`...")
        # Yield message before upload
        yield package_workflow_outputs(
            history=history, repo_id=repo_id, state=state,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )
        try:
            upload_file_to_space_action(io.StringIO(code_to_upload), "app.py", repo_id, hf_profile, hf_token)
            history = add_bot_message(history, "✅ Uploaded `app.py`. Click 'Send' to generate requirements.")
            logging.info("app.py uploaded. Transitioning to STATE_GENERATING_REQUIREMENTS.")
            # Transition state, clear generated code after use
            return package_workflow_outputs(
                history=history, repo_id=repo_id, state=STATE_GENERATING_REQUIREMENTS,
                updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
                attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
            )
        except RuntimeError as e: # Catch specific RuntimeErrors from upload_file_to_space_action
            logging.error(f"Caught RuntimeError uploading app.py: {e}")
            history = add_bot_message(history, f"❌ Error uploading `app.py`: {e}. Click 'reset'.")
            # Reset state on error
            return package_workflow_outputs(
                history=history, repo_id=None, state=STATE_IDLE,
                updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
                attempts=0, app_desc=None, repo_name=None, generated_code=None,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
            )


def handle_generating_requirements(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_GENERATING_REQUIREMENTS
    space_sdk:      str,
    preview_html:   str,
    container_logs: str,
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None,
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the GENERATING_REQUIREMENTS state."""
    logging.info("Handling STATE_GENERATING_REQUIREMENTS")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    history = add_bot_message(history, "📄 Generating `requirements.txt`...")
    # Yield message before generating requirements
    yield package_workflow_outputs(
        history=history, repo_id=repo_id, state=state,
        updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
        attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
        use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
    )

    # Logic to determine required packages based on SDK and keywords in the app description
    reqs_list = ["gradio"] if space_sdk == "gradio" else ["streamlit"]
    # Add essential libraries regardless of description keywords or grounding
    essential_libs = ["google-generativeai", "huggingface_hub"]
    reqs_list.extend(essential_libs)

    # Add common libraries if description suggests they might be needed
    if app_description:
        app_desc_lower = app_description.lower()
        if "requests" in app_desc_lower or "api" in app_desc_lower:
             reqs_list.append("requests")
        if "image" in app_desc_lower or "upload" in app_desc_lower or "blur" in app_desc_lower or "vision" in app_desc_lower or "photo" in app_desc_lower:
            reqs_list.append("Pillow")
        if "numpy" in app_desc_lower: reqs_list.append("numpy")
        if "pandas" in app_desc_lower or "dataframe" in app_desc_lower: reqs_list.append("pandas")
        if any(lib in app_desc_lower for lib in ["scikit-image", "skimage", "cv2", "opencv"]):
             reqs_list.extend(["scikit-image", "opencv-python"])
        if any(lib in app_desc_lower for lib in ["transformer", "llama", "mistral", "bert", "gpt2"]):
            reqs_list.append("transformers")
        if any(lib in app_desc_lower for lib in ["torch", "pytorch", "tensorflow", "keras"]):
            reqs_list.extend(["torch", "tensorflow"]) # Consider adding specific hardware versions if needed

    # Use dict.fromkeys to get unique items while preserving insertion order (Python 3.7+)
    reqs_list = list(dict.fromkeys(reqs_list))
    # Sort alphabetically for cleaner requirements.txt
    reqs_list.sort()

    reqs_content = "\n".join(reqs_list) + "\n"

    history = add_bot_message(history, "✅ `requirements.txt` generated. Click 'Send' to upload.")
    logging.info("requirements.txt generated. Transitioning to STATE_UPLOADING_REQUIREMENTS.")
    # Transition state and store requirements content
    return package_workflow_outputs(
        history=history, repo_id=repo_id, state=STATE_UPLOADING_REQUIREMENTS,
        updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
        attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=reqs_content,
        use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
    )


def handle_uploading_requirements(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_UPLOADING_REQUIREMENTS
    space_sdk:      str,
    preview_html:   str,
    container_logs: str,
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None, # This should hold the requirements content
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the UPLOADING_REQUIREMENTS state."""
    logging.info("Handling STATE_UPLOADING_REQUIREMENTS")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    # Retrieve requirements content from state variable
    reqs_content_to_upload = generated_code
    if not reqs_content_to_upload:
         logging.error("Internal error: No requirements content to upload in STATE_UPLOADING_REQUIREMENTS. Resetting.")
         history = add_bot_message(history, "Internal error: No requirements content to upload. Resetting.")
         return package_workflow_outputs(
            history=history, repo_id=None, state=STATE_IDLE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=0, app_desc=None, repo_name=None, generated_code=None,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )
    else:
         history = add_bot_message(history, "☁️ Uploading `requirements.txt`...")
         # Yield message before upload
         yield package_workflow_outputs(
            history=history, repo_id=repo_id, state=state,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )
         try:
             # Perform requirements file upload
             upload_file_to_space_action(io.StringIO(reqs_content_to_upload), "requirements.txt", repo_id, hf_profile, hf_token)
             history = add_bot_message(history, "✅ Uploaded `requirements.txt`. Click 'Send' to generate README.")
             logging.info("requirements.txt uploaded. Transitioning to STATE_GENERATING_README.")
             # Transition state, clear generated code after use
             return package_workflow_outputs(
                history=history, repo_id=repo_id, state=STATE_GENERATING_README,
                updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
                attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
             )
         except RuntimeError as e: # Catch specific RuntimeErrors
             logging.error(f"Caught RuntimeError uploading requirements.txt: {e}")
             history = add_bot_message(history, f"❌ Error uploading `requirements.txt`: {e}. Click 'reset'.")
             # Yield error message and reset state on failure
             return package_workflow_outputs(
                history=history, repo_id=None, state=STATE_IDLE,
                updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
                attempts=0, app_desc=None, repo_name=None, generated_code=None,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
             )

def handle_generating_readme(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_GENERATING_README
    space_sdk:      str,
    preview_html:   str,
    container_logs: str,
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None,
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the GENERATING_README state."""
    logging.info("Handling STATE_GENERATING_README")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    history = add_bot_message(history, "📝 Generating `README.md`...")
    # Yield message before generating README
    yield package_workflow_outputs(
        history=history, repo_id=repo_id, state=state,
        updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
        attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
        use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
    )

    # Generate simple README content with Space metadata header
    readme_title = repo_name if repo_name else "My Awesome Space"
    readme_description = app_description if app_description else f"This Hugging Face Space hosts an AI-generated {space_sdk} application."

    readme_content = f"""---
title: {readme_title}
emoji: 🚀
colorFrom: blue
colorTo: yellow
sdk: {space_sdk}
app_file: app.py
pinned: false
---

# {readme_title}

{readme_description}

This Space was automatically generated by an AI workflow using Google Gemini and Gradio.
"""
    history = add_bot_message(history, "✅ `README.md` generated. Click 'Send' to upload.")
    logging.info("README.md generated. Transitioning to STATE_UPLOADING_README.")
    # Transition state and store README content
    return package_workflow_outputs(
        history=history, repo_id=repo_id, state=STATE_UPLOADING_README,
        updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
        attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=readme_content,
        use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
    )


def handle_uploading_readme(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_UPLOADING_README
    space_sdk:      str,
    preview_html:   str,
    container_logs: str,
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None, # This should hold the README content
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the UPLOADING_README state."""
    logging.info("Handling STATE_UPLOADING_README")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    # Retrieve README content from state variable
    readme_content_to_upload = generated_code
    if not readme_content_to_upload:
         logging.error("Internal error: No README content to upload in STATE_UPLOADING_README. Resetting.")
         history = add_bot_message(history, "Internal error: No README content to upload. Resetting.")
         return package_workflow_outputs(
            history=history, repo_id=None, state=STATE_IDLE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=0, app_desc=None, repo_name=None, generated_code=None,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )
    else:
         history = add_bot_message(history, "☁️ Uploading `README.md`...")
         # Yield message before upload
         yield package_workflow_outputs(
            history=history, repo_id=repo_id, state=state,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )
         try:
             # Perform README file upload
             upload_file_to_space_action(io.StringIO(readme_content_to_upload), "README.md", repo_id, hf_profile, hf_token)
             history = add_bot_message(history, "✅ Uploaded `README.md`. All files uploaded. Space is now building. Click 'Send' to check build logs.")
             logging.info("README.md uploaded. Transitioning to STATE_CHECKING_LOGS_BUILD.")
             # Transition to checking build logs, clear content after use
             return package_workflow_outputs(
                history=history, repo_id=repo_id, state=STATE_CHECKING_LOGS_BUILD,
                updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
                attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
             )
         except RuntimeError as e: # Catch specific RuntimeErrors
             logging.error(f"Caught RuntimeError uploading README.md: {e}")
             history = add_bot_message(history, f"❌ Error uploading `README.md`: {e}. Click 'reset'.")
             # Yield error message and reset state on failure
             return package_workflow_outputs(
                history=history, repo_id=None, state=STATE_IDLE,
                updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
                attempts=0, app_desc=None, repo_name=None, generated_code=None,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
             )

def handle_checking_logs_build(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_CHECKING_LOGS_BUILD
    space_sdk:      str,
    preview_html:   str,
    container_logs: str, # Current UI value
    build_logs:     str, # Current UI value
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None,
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the CHECKING_LOGS_BUILD state."""
    logging.info(f"Handling STATE_CHECKING_LOGS_BUILD for repo '{repo_id}'")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    history = add_bot_message(history, "🔍 Fetching build logs...")
    # Yield message before fetching logs (which includes a delay)
    yield package_workflow_outputs(
        history=history, repo_id=repo_id, state=state,
        updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
        attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
        use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
    )

    # Fetch build logs from HF Space
    build_logs_text = get_build_logs_action(repo_id, hf_profile, hf_token)
    updated_build = build_logs_text # Update the logs display variable

    # Simple check for common error indicators in logs (case-insensitive)
    if "error" in updated_build.lower() or "exception" in updated_build.lower() or "build failed" in updated_build.lower():
         logging.warning("Build logs indicate potential issues.")
         history = add_bot_message(history, "⚠️ Build logs indicate potential issues. Please inspect above. Click 'Send' to check container logs (app might still start despite build warnings).")
         state = STATE_CHECKING_LOGS_RUN # Transition even on build error, to see if container starts
         logging.info("Build logs show issues. Transitioning to STATE_CHECKING_LOGS_RUN.")
         # Yield updated state, logs, and variables
         return package_workflow_outputs(
            history=history, repo_id=repo_id, state=state,
            updated_preview=preview_html, updated_run=container_logs, updated_build=updated_build, # Updated build logs
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )

    else:
         logging.info("Build logs appear clean.")
         history = add_bot_message(history, "✅ Build logs fetched. Click 'Send' to check container logs.")
         state = STATE_CHECKING_LOGS_RUN # Transition to next log check
         logging.info("Transitioning to STATE_CHECKING_LOGS_RUN.")
         # Yield updated state, logs, and variables
         return package_workflow_outputs(
            history=history, repo_id=repo_id, state=state,
            updated_preview=preview_html, updated_run=container_logs, updated_build=updated_build, # Updated build logs
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )


def handle_checking_logs_run(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_CHECKING_LOGS_RUN
    space_sdk:      str,
    preview_html:   str,
    container_logs: str, # Current UI value
    build_logs:     str, # Current UI value
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None,
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the CHECKING_LOGS_RUN state."""
    logging.info(f"Handling STATE_CHECKING_LOGS_RUN for repo '{repo_id}'")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    history = add_bot_message(history, "🔍 Fetching container logs...")
    # Yield message before fetching logs (includes a delay)
    yield package_workflow_outputs(
        history=history, repo_id=repo_id, state=state,
        updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
        attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
        use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
    )

    # Fetch container logs from HF Space
    container_logs_text = get_container_logs_action(repo_id, hf_profile, hf_token)
    updated_run = container_logs_text # Update the logs display variable

    # Check for errors in run logs and if we have debug attempts left
    if ("error" in updated_run.lower() or "exception" in updated_run.lower()) and debug_attempts < MAX_DEBUG_ATTEMPTS:
         new_attempts = debug_attempts + 1 # Increment debug attempts counter
         logging.warning(f"Errors detected in container logs. Attempting debug fix #{new_attempts}.")
         history = add_bot_message(history, f"❌ Errors detected in container logs. Attempting debug fix #{new_attempts}/{MAX_DEBUG_ATTEMPTS}. Click 'Send' to proceed.")
         state = STATE_DEBUGGING_CODE # Transition to the debugging state
         logging.info("Transitioning to STATE_DEBUGGING_CODE.")
         # Yield updated state, logs, attempts, and variables
         return package_workflow_outputs(
            history=history, repo_id=repo_id, state=state,
            updated_preview=preview_html, updated_run=updated_run, updated_build=build_logs, # Updated run logs
            attempts=new_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )

    elif ("error" in updated_run.lower() or "exception" in updated_run.lower()) and debug_attempts >= MAX_DEBUG_ATTEMPTS:
         # Max debug attempts reached
         logging.error(f"Errors detected in container logs. Max debug attempts ({MAX_DEBUG_ATTEMPTS}) reached.")
         history = add_bot_message(history, f"❌ Errors detected in container logs. Max debug attempts ({MAX_DEBUG_ATTEMPTS}) reached. Please inspect logs manually or click 'reset'.")
         state = STATE_COMPLETE # Workflow ends on failure after attempts
         logging.info("Max debug attempts reached. Transitioning to STATE_COMPLETE.")
         # Yield updated state, logs, attempts, and variables
         return package_workflow_outputs(
            history=history, repo_id=repo_id, state=state,
            updated_preview=preview_html, updated_run=updated_run, updated_build=build_logs, # Updated run logs
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )

    else:
         # No significant errors found in logs, assume success
         logging.info("No significant errors found in run logs.")
         history = add_bot_message(history, "✅ App appears to be running successfully! Check the iframe above. Click 'reset' to start a new project.")
         state = STATE_COMPLETE # Workflow ends on success
         logging.info("Transitioning to STATE_COMPLETE.")
         # Yield updated state, logs, attempts, and variables
         return package_workflow_outputs(
            history=history, repo_id=repo_id, state=state,
            updated_preview=preview_html, updated_run=updated_run, updated_build=build_logs, # Updated run logs
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )


def handle_debugging_code(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_DEBUGGING_CODE
    space_sdk:      str,
    preview_html:   str,
    container_logs: str, # Current UI value (contains logs to debug from)
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None,
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the DEBUGGING_CODE state."""
    logging.info(f"Handling STATE_DEBUGGING_CODE (attempt #{debug_attempts}) for repo '{repo_id}'")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    history = add_bot_message(history, f"🧠 Calling Gemini to generate fix based on logs...")
    if use_grounding:
         history = add_bot_message(history, "(Using Grounding with Google Search)")
    # Yield message before Gemini API call
    yield package_workflow_outputs(
        history=history, repo_id=repo_id, state=state,
        updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
        attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
        use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
    )

    # Construct prompt for Gemini including the container logs
    debug_prompt = f"""
You are debugging a {space_sdk} Space. The goal is to fix the code in `app.py` based on the container logs provided.

Here are the container logs:
Use code with caution.
Python
{container_logs}
Generate the *complete, fixed* content for `app.py` based on these logs.
Return **only** the python code block for app.py. Do not include any extra text, explanations, or markdown outside the code block.
"""
    try:
         # Call Gemini to generate the corrected code, optionally using grounding
         # Note: Grounding might be less effective for debugging based *only* on logs,
         # but we include the option as requested.
         # Use the current_gemini_key and current_gemini_model derived from state inputs
         fix_code = call_gemini(debug_prompt, current_gemini_key, current_gemini_model, use_grounding=use_grounding)
         fix_code = fix_code.strip()
         # Clean up potential markdown formatting
         fix_code = re.sub(r'^```python\s*', '', fix_code, flags=re.MULTILINE).strip()
         fix_code = re.sub(r'^```\s*', '', fix_code, flags=re.MULTILINE).strip()
         fix_code = re.sub(r'\s*```$', '', fix_code, flags=re.MULTILINE).strip()


         if not fix_code:
            logging.warning("Gemini returned empty fix code.")
            raise ValueError("Gemini returned empty fix code.")

         history = add_bot_message(history, "✅ Fix code generated. Click 'Send' to upload.")
         logging.info("Fix code generated. Transitioning to STATE_UPLOADING_FIXED_APP_PY.")
         # Transition to the upload state for the fix, store generated code
         return package_workflow_outputs(
            history=history, repo_id=repo_id, state=STATE_UPLOADING_FIXED_APP_PY,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=fix_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )

    except RuntimeError as e: # Catch specific RuntimeErrors
         logging.error(f"Caught RuntimeError generating debug code: {e}")
         history = add_bot_message(history, f"❌ Error generating debug code: {e}. Click 'reset'.")
         # Yield error message and reset state on failure
         return package_workflow_outputs(
            history=history, repo_id=None, state=STATE_IDLE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=0, app_desc=None, repo_name=None, generated_code=None,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )


def handle_uploading_fixed_app_py(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_UPLOADING_FIXED_APP_PY
    space_sdk:      str,
    preview_html:   str,
    container_logs: str,
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None, # This should hold the fixed code
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the UPLOADING_FIXED_APP_PY state."""
    logging.info(f"Handling STATE_UPLOADING_FIXED_APP_PY for repo '{repo_id}'")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    # Retrieve the fixed code from the state variable
    fixed_code_to_upload = generated_code
    if not fixed_code_to_upload:
         logging.error("Internal error: No fixed code available to upload in STATE_UPLOADING_FIXED_APP_PY. Resetting.")
         history = add_bot_message(history, "Internal error: No fixed code available to upload. Resetting.")
         return package_workflow_outputs(
            history=history, repo_id=None, state=STATE_IDLE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=0, app_desc=None, repo_name=None, generated_code=None,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )
    else:
         history = add_bot_message(history, "☁️ Uploading fixed `app.py`...")
         # Yield message before upload
         yield package_workflow_outputs(
            history=history, repo_id=repo_id, state=state,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )

         try:
             # Perform the upload of the fixed app.py
             upload_file_to_space_action(io.StringIO(fixed_code_to_upload), "app.py", repo_id, hf_profile, hf_token)
             history = add_bot_message(history, "✅ Fixed `app.py` uploaded. Space will rebuild. Click 'Send' to check logs again.")
             state = STATE_CHECKING_LOGS_RUN # Go back to checking run logs after uploading the fix
             logging.info("Fixed app.py uploaded. Transitioning to STATE_CHECKING_LOGS_RUN.")
             # Transition state, clear code after use
             return package_workflow_outputs(
                history=history, repo_id=repo_id, state=state,
                updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
                attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
             )
         except RuntimeError as e: # Catch specific RuntimeErrors
             logging.error(f"Caught RuntimeError uploading fixed app.py: {e}")
             history = add_bot_message(history, f"❌ Error uploading fixed `app.py`: {e}. Click 'reset'.")
             # Yield error message and reset state on failure
             return package_workflow_outputs(
                history=history, repo_id=None, state=STATE_IDLE,
                updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
                attempts=0, app_desc=None, repo_name=None, generated_code=None,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
             )

def handle_complete(
    message: str, # User might type something in COMPLETE state
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    gemini_api_key: str | None,
    gemini_model:   str | None,
    repo_id:  str | None,
    state: WorkflowState, # Should be STATE_COMPLETE
    space_sdk:      str,
    preview_html:   str,
    container_logs: str,
    build_logs:     str,
    debug_attempts: int,
    app_description: str | None,
    repo_name: str | None,
    generated_code: str | None,
    use_grounding: bool,
    *args,
    **kwargs
) -> WorkflowHandlerReturn:
    """Handles logic when in the COMPLETE state."""
    logging.info("Handling STATE_COMPLETE")
    current_gemini_key = gemini_api_key # Use the input vars directly
    current_gemini_model = gemini_model

    # If the user types something in the complete state, maybe interpret it?
    # For now, we'll just stay in COMPLETE unless they type 'reset'.
    if "reset" in message.lower():
        logging.info("Reset command received in COMPLETE state.")
        history = add_bot_message(history, "Workflow reset.")
        # Reset relevant states and UI outputs
        return package_workflow_outputs(
            history=history, repo_id=None, state=STATE_IDLE,
            updated_preview="<p>No Space created yet.</p>", updated_run="", updated_build="",
            attempts=0, app_desc=None, repo_name=None, generated_code=None,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
        )
    else:
         # Stay in COMPLETE state
         history = add_bot_message(history, "Workflow is complete. Type 'reset' to start a new project.")
         return package_workflow_outputs(
            history=history, repo_id=repo_id, state=STATE_COMPLETE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
            attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
         )


# --- Dispatch Table ---
STATE_HANDLERS: Dict[WorkflowState, Any] = { # Use Any for type hint simplicity here
    STATE_IDLE: handle_idle,
    STATE_AWAITING_REPO_NAME: handle_awaiting_repo_name,
    STATE_CREATING_SPACE: handle_creating_space,
    STATE_GENERATING_CODE: handle_generating_code,
    STATE_UPLOADING_APP_PY: handle_uploading_app_py,
    STATE_GENERATING_REQUIREMENTS: handle_generating_requirements,
    STATE_UPLOADING_REQUIREMENTS: handle_uploading_requirements,
    STATE_GENERATING_README: handle_generating_readme,
    STATE_UPLOADING_README: handle_uploading_readme,
    STATE_CHECKING_LOGS_BUILD: handle_checking_logs_build,
    STATE_CHECKING_LOGS_RUN: handle_checking_logs_run,
    STATE_DEBUGGING_CODE: handle_debugging_code,
    STATE_UPLOADING_FIXED_APP_PY: handle_uploading_fixed_app_py,
    STATE_COMPLETE: handle_complete,
}


# This is the main generator function for the workflow, triggered by the 'Send' button
# Inputs and Outputs list must match exactly. The generator receives values from the inputs list.
def ai_workflow_chat(
    message: str,
    history: List[Dict[str, str]],
    hf_profile: gr.OAuthProfile | None,
    hf_token:   gr.OAuthToken   | None,
    # Pass gemini_api_key and gemini_model as inputs - these come from the State variables
    gemini_api_key_state: str | None,
    gemini_model_state:   str | None,
    repo_id_state:  str | None,
    workflow_state: WorkflowState, # Use the Literal type hint
    space_sdk:      str,
    # NOTE: UI component values are passed *by value* to the generator
    preview_html:   str, # Value from iframe HTML
    container_logs: str, # Value from run_txt Textbox
    build_logs:     str, # Value from build_txt Textbox
    debug_attempts_state: int,
    app_description_state: str | None,
    repo_name_state: str | None,
    generated_code_state: str | None,
    use_grounding_state: bool, # Value from use_grounding_checkbox
    # Accept any extra args/kwargs passed by Gradio, common for generators
    *args,
    **kwargs
) -> Any: # Use Any because it yields multiple times before returning the final value (None in this case)
    """
    Generator function to handle the AI workflow state machine.
    Each 'yield' pauses execution and sends values to update Gradio outputs/state.
    """
    # Unpack state variables and UI values from Gradio inputs
    repo_id = repo_id_state
    state = workflow_state
    attempts = debug_attempts_state
    app_desc = app_description_state
    repo_name = repo_name_state
    generated_code = generated_code_state
    use_grounding = use_grounding_state
    current_gemini_key = gemini_api_key_state
    current_gemini_model = gemini_model_state

    logging.info(f"ai_workflow_chat generator started. State: {state}, Message: {message[:50]}...")
    # Log all inputs for debugging if needed
    # logging.debug(f"ai_workflow_chat inputs: {locals()}")

    # Add the user's message to the chat history immediately
    user_message_entry = {"role": "user", "content": message}
    if hf_profile and hf_profile.username:
         user_message_entry["name"] = hf_profile.username
    history.append(user_message_entry)
    logging.debug("User message added to history.")


    # Yield immediately to update the chat UI with the user's message
    # This provides immediate feedback to the user while the AI processes
    # Ensure all state variables and UI outputs are yielded back in the correct order
    yield package_workflow_outputs(
        history=history, repo_id=repo_id, state=state,
        updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
        attempts=attempts, app_desc=app_desc, repo_name=repo_name, generated_code=generated_code,
        use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
    )

    try:
        # --- State Machine Logic using Dispatch Table ---
        handler = STATE_HANDLERS.get(state)

        if handler:
            logging.debug(f"Invoking handler for state: {state}")
            # Call the state handler function, passing all necessary data
            # Need to pass *all* inputs to the handler function
            # Note: The inputs passed here are the *current* values received by the generator,
            # which are the values of the UI components and State variables
            # at the moment the button was clicked, plus any previous yielded state.
            handler_output = handler(
                message=message, history=history,
                hf_profile=hf_profile, hf_token=hf_token,
                gemini_api_key=current_gemini_key, gemini_model=current_gemini_model, # Pass current values
                repo_id=repo_id, state=state, space_sdk=space_sdk,
                preview_html=preview_html, container_logs=container_logs, build_logs=build_logs, # Pass current UI values
                debug_attempts=attempts, app_description=app_desc, repo_name=repo_name, generated_code=generated_code, # Pass current state values
                use_grounding=use_grounding
            )
            # The handler might yield intermediate updates (e.g., "Generating...")
            if isinstance(handler_output, Generator):
                 # If the handler is also a generator, yield from it
                 logging.debug("Handler is a generator, yielding from it.")
                 yield from handler_output
            else:
                 # If the handler returned the final tuple for this step, yield it
                 logging.debug("Handler returned final output tuple, yielding it.")
                 yield handler_output

        else:
            logging.error(f"No handler found for state: {state}. Resetting.")
            # Fallback for unknown state
            history = add_bot_message(history, f"Internal error: Unknown state `{state}`. Resetting.")
            yield package_workflow_outputs(
                history=history, repo_id=None, state=STATE_IDLE,
                updated_preview="<p>Error: Unknown state.</p>", updated_run="", updated_build="",
                attempts=0, app_desc=None, repo_name=None, generated_code=None,
                use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
            )


    except Exception as e:
        # This catches any unexpected errors that occur within any state's logic
        # Specific errors from helper functions (like RuntimeError) should ideally be caught in handlers,
        # but this is a safety net.
        error_message = f"Workflow step failed unexpectedly ({state}): {e}. Click 'Send' to re-attempt this step or 'reset'."
        history = add_bot_message(history, error_message)
        logging.exception(f"Critical Error caught in ai_workflow_chat generator for state {state}") # Log with traceback

        # On unexpected error, reset to IDLE, but pass through the current Gemini state
        yield package_workflow_outputs(
            history=history, repo_id=None, state=STATE_IDLE,
            updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs, # Keep existing UI logs
            attempts=0, app_desc=None, repo_name=None, generated_code=None, # Reset project-specific states
            use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model # Pass through Gemini states
        )


# --- Build the Gradio UI ---

with gr.Blocks(title="AI-Powered HF Space App Builder") as ai_builder_tab:
    # Gradio State variables - these persist their values across user interactions (clicks)
    hf_profile   = gr.State(None)
    hf_token     = gr.State(None)
    gemini_api_key_state   = gr.State("")  # start with no key
    gemini_model_state     = gr.State(DEFAULT_GEMINI_MODEL) # Default selected model

    repo_id      = gr.State(None) # Stores the ID of the created Space
    workflow     = gr.State(STATE_IDLE, live=True) # Stores the current state, live update for status_text
    sdk_state    = gr.State("gradio") # Stores the selected Space SDK (Gradio or Streamlit)
    debug_attempts = gr.State(0) # Counter for how many debugging attempts have been made
    app_description = gr.State(None) # Stores the user's initial description of the desired app
    repo_name_state = gr.State(None) # Stores the chosen repository name for the Space
    generated_code_state = gr.State(None) # Temporary storage for generated file content (app.py, reqs, README)
    use_grounding_state = gr.State(False)


    with gr.Row():
        with gr.Column(scale=1, min_width=300):
            gr.Markdown("## Hugging Face Login")
            login_status = gr.Markdown("*Not logged in.*")
            login_btn    = gr.LoginButton(variant="huggingface")

            gr.Markdown("## Google AI Studio / Gemini")
            gemini_input  = gr.Textbox(
                label="Your Google AI Studio API Key",
                type="password",
                interactive=True,
                value="",
                info="Enter your own key here"
            )
            gemini_status = gr.Markdown("")

            model_selector = gr.Radio(
                choices=GEMINI_MODEL_CHOICES,
                value=DEFAULT_GEMINI_MODEL,
                label="Select model",
                interactive=True
            )

            model_description_text = gr.Markdown(get_model_description(DEFAULT_GEMINI_MODEL))

            use_grounding_checkbox = gr.Checkbox(
                label="Enable Grounding with Google Search",
                value=False,
                interactive=True,
                info="Use Google Search results to inform Gemini's response (may improve factuality)."
            )

            gr.Markdown("## Space SDK")
            sdk_selector = gr.Radio(choices=["gradio","streamlit"], value="gradio", label="Template SDK", interactive=True)

            gr.Markdown("## Workflow Status")
            status_text = gr.Textbox(label="Current State", value=STATE_IDLE, interactive=False)
            repo_id_text = gr.Textbox(label="Current Space ID", value="None", interactive=False)


        with gr.Column(scale=3):
            chatbot    = gr.Chatbot(type='messages', label="AI Workflow Chat")
            user_input = gr.Textbox(placeholder="Type your message…", interactive=True)
            send_btn   = gr.Button("Send", interactive=False)


            iframe    = gr.HTML("<p>No Space created yet.</p>")
            build_txt = gr.Textbox(label="Build Logs", lines=10, interactive=False, value="", max_lines=20)
            run_txt   = gr.Textbox(label="Container Logs", lines=10, interactive=False, value="", max_lines=20)


    # --- Define Event Handlers and Chains ---

    # List of prerequisite State components for the send button logic
    prerequisite_states_for_button = [
        hf_profile, hf_token, gemini_api_key_state, gemini_model_state, workflow # Add workflow state
    ]

    # Use the pattern suggested in the feedback: wire each dependency change to the same handler
    for state_comp in prerequisite_states_for_button:
        # Create a lambda that captures the list of states at the time it's defined
        # This lambda will be called by Gradio and receives the new value of the changed component first,
        # followed by the values of the components in 'inputs'.
        # We pass ALL prerequisite states (including the one that changed) to the lambda's inputs.
        # The lambda then passes the *explicitly listed* input values from the 'states' list closure
        # to the target function, check_send_button_ready.
        state_comp.change(
            lambda *args, states=prerequisite_states_for_button: check_send_button_ready(
                states[0], states[1], states[2], states[3], states[4] # Pass values from the 'states' list closure
            ),
            inputs=prerequisite_states_for_button, # Pass all required states
            outputs=[send_btn], # Update only the send button
        )
        # Add a debug log to confirm wiring (optional debug)
        # logging.debug(f"Wired {state_comp.label}.change to check_send_button_ready.")


    # Handle login button click: Update profile/token state -> Their .change handlers trigger check_send_button_ready
    login_btn.click(
         # Lambda takes the LoginButton output (profile, token tuple) which is 2 args: (profile, token)
         lambda profile, token: (profile, token),
         inputs=[login_btn],
         outputs=[hf_profile, hf_token]
    ) # The .change handlers on hf_profile and hf_token will trigger check_send_button_ready

    # Handle Gemini Key Input change: Update key state -> Configure Gemini status
    gemini_input.change(
        # Lambda receives the new value of gemini_input (1 arg) because inputs=[gemini_input]
        lambda new_key_value: new_key_value,
        inputs=[gemini_input], # Explicitly pass the changed component for clarity
        outputs=[gemini_api_key_state] # This output updates the state
    ).then(
        # Configure Gemini using the updated state variables
        # Lambda receives (prev_output, api_key_val_from_state, model_name_val_from_state)
        # The prev_output is the new key value from the previous step's output (gemini_api_key_state)
        # We use the explicit inputs instead of prev_output for robustness.
        lambda prev_output, api_key_val_from_state, model_name_val_from_state: configure_gemini(api_key_val_from_state, model_name_val_from_state),
        inputs=[gemini_api_key_state, gemini_model_state], # Explicitly pass the required states
        outputs=[gemini_status] # Update Gemini status display.
    ) # The gemini_api_key_state.change handler (wired in the loop above) handles button updates.

    # Handle Gemini Model Selector change: Update model state -> Update description -> Configure Gemini status
    model_selector.change(
        # Lambda receives the new value of model_selector (1 arg) because inputs=[model_selector]
        lambda new_model_name: new_model_name,
        inputs=[model_selector], # Explicitly pass the changed component for clarity
        outputs=[gemini_model_state] # This output updates the state
    ).then(
        # Update the model description display
        # Lambda receives (prev_output, model_name_val_from_state)
        # The prev_output is the new model name from the previous step's output (gemini_model_state)
        # We use the explicit inputs instead of prev_output for robustness.
        lambda prev_output, model_name_val_from_state: get_model_description(model_name_val_from_state),
        inputs=[gemini_model_state], # Get the new state value
        outputs=[model_description_text] # Update description UI.
    ).then(
        # Configure Gemini using the updated state variables
        # Lambda receives (prev_output, api_key_val_from_state, model_name_val_from_state)
        # The prev_output is the description text from the previous step.
        # We use the explicit inputs instead of prev_output for robustness.
        lambda prev_output, api_key_val_from_state, model_name_val_from_state: configure_gemini(api_key_val_from_state, model_name_val_from_state),
        inputs=[gemini_api_key_state, gemini_model_state], # Explicitly pass the required states
        outputs=[gemini_status] # Update Gemini status display.
    ) # The gemini_model_state.change handler (wired in the loop above) handles button updates.


    # Handle Grounding checkbox change: update grounding state
    use_grounding_checkbox.change(
        lambda v: v, inputs=[use_grounding_checkbox], outputs=[use_grounding_state] # Use lists for inputs/outputs
    )

    # Handle SDK selector change: update sdk state
    sdk_selector.change(
        lambda s: s, inputs=[sdk_selector], outputs=[sdk_state] # Use lists for inputs/outputs
    )

    # Link Workflow State variable change to UI status display
    workflow.change(
        lambda new_state_value: new_state_value,
        inputs=[workflow], # Use lists for inputs
        outputs=[status_text] # Use lists for outputs
    )

    # Link Repo ID State variable change to UI status display
    repo_id.change(
        lambda new_repo_id_value: new_repo_id_value if new_repo_id_value else "None",
        inputs=[repo_id], # Use lists for inputs
        outputs=[repo_id_text] # Use lists for outputs
    )


    # The main event handler for the Send button (generator)
    # This .click() event triggers the ai_workflow_chat generator function
    # Inputs are read from UI components AND State variables
    # Outputs are updated by the values yielded from the generator
    # Ensure inputs and outputs match the ai_workflow_chat signature and yield tuple EXACTLY.
    # This call is direct, not in a .then() chain, so it does NOT receive a prev_output arg.
    # It receives args only from the inputs list.
    send_btn_inputs = [
        user_input, chatbot, # UI component inputs (message, current chat history)
        hf_profile, hf_token, # HF State variables
        gemini_api_key_state, gemini_model_state, # Gemini State variables
        repo_id, workflow, sdk_state, # Workflow State variables
        iframe, run_txt, build_txt, # UI component inputs (current values)
        debug_attempts, app_description, repo_name_state, generated_code_state, # Other State variables
        use_grounding_state # Grounding state input
    ]
    send_btn_outputs = [
        chatbot, # Updates Chatbot
        repo_id, workflow, # Updates State variables (repo_id, workflow)
        iframe, run_txt, build_txt, # Updates UI components (iframe, logs)
        debug_attempts, app_description, repo_name_state, generated_code_state, # Updates other State variables
        use_grounding_state, # Updates Grounding state
        gemini_api_key_state, gemini_model_state # Updates Gemini State variables - these are passed through the generator
    ]

    send_btn.click(
        ai_workflow_chat,
        inputs=send_btn_inputs,
        outputs=send_btn_outputs
    ).success( # Chain a .success() event to run *after* the .click() handler completes without error
         # Clear the user input textbox after the message is sent and processed
         lambda: gr.Textbox.update(value=""), # Use specific component update
         inputs=None,
         outputs=[user_input] # Use lists for outputs
    )


    # --- Initial Load Event Chain ---
    # This chain runs once when the app loads
    ai_builder_tab.load(
        # Action 1: Show profile (loads cached login if available)
        # Lambda receives args corresponding to load's inputs. Load has no explicit inputs here.
        # However, Gradio *does* pass the initial values of all components/states defined *before* the load event.
        # The most robust way is to pass the specific state needed.
        lambda initial_profile: show_profile(initial_profile),
        inputs=[hf_profile], # Pass the initial profile state value
        outputs=[login_status] # Updates UI. Use lists for outputs. This output becomes prev_output for the next .then()
    ).then(
        # Action 2: Configure Gemini using initial state
        # Lambda receives (prev_output, api_key_val, model_name_val)
        # prev_output is the string from show_profile. Use explicit inputs.
        lambda prev_output, api_key_val_from_state, model_name_val_from_state: configure_gemini(api_key_val_from_state, model_name_val_from_state),
        inputs=[gemini_api_key_state, gemini_model_state], # Explicitly pass the required states
        outputs=[gemini_status] # Update Gemini status display. Use lists for outputs.
    ).then(
        # Action 3: After initial load checks, update the button state based on initial states
        # Lambda receives (prev_output, *prereq_state_values)
        # prev_output is the string from configure_gemini. Use explicit inputs.
        lambda prev_output, p1, p2, p3, p4, p5: check_send_button_ready(p1, p2, p3, p4, p5), # Match check_send_button_ready signature
        inputs=prerequisite_states_for_button, # Pass all 5 prerequisite states
        outputs=[send_btn], # Update the send button. Use lists for outputs.
    ).then(
        # Action 4: Update the model description text based on the default selected model
        # Lambda receives (prev_output, model_name_val)
        # prev_output is the gr.Button.update object. Use explicit input.
        lambda prev_output, model_name_val_from_state: get_model_description(model_name_val_from_state),
        inputs=[gemini_model_state], # Get the default model name from state
        outputs=[model_description_text] # Update description UI. Use lists for outputs.
    ).then(
        # Action 5: Add the initial welcome message to the chat history
        # Lambda receives (prev_output)
        # prev_output is the description text.
        lambda prev_output: greet(),
        inputs=None, # Greet takes no explicit inputs
        outputs=[chatbot] # Updates the chatbot display. Use lists for outputs.
    )


# The main workflow function and other helper functions are correctly defined OUTSIDE the gr.Blocks context
# because they operate on the *values* passed to them by Gradio event triggers, not the UI component objects themselves.


if __name__ == "__main__":
    # Optional: Configure Gradio settings using environment variables
    os.environ["GRADIO_MAX_FILE_SIZE"] = "100MB"
    os.environ["GRADIO_TEMP_DIR"] = "./tmp"
    os.makedirs(os.environ["GRADIO_TEMP_DIR"], exist_ok=True)

    logging.info("Starting Gradio app...")
    # Launch the Gradio UI
    ai_builder_tab.launch()