Spaces:
Sleeping
Sleeping
File size: 94,949 Bytes
a0f57d6 3290861 a0f57d6 4eff17c 3290861 a0f57d6 b8c1a3d a0f57d6 cfa8219 a0f57d6 6146397 b8c1a3d 4c46f34 7f04c4f 8756ea3 ce8cbe4 8756ea3 b8c1a3d 7f04c4f a0f57d6 0df9635 4eff17c 2528f91 4eff17c 5d26448 b8c1a3d 9053015 2528f91 9053015 fb9266f a0f57d6 9053015 a0f57d6 b8c1a3d a0f57d6 5d26448 b8c1a3d 2528f91 b8c1a3d 2528f91 4eff17c dbd6fa0 b8c1a3d dbd6fa0 2528f91 dbd6fa0 0dfd0d1 b8c1a3d dbd6fa0 b8c1a3d 4eff17c a0f57d6 2528f91 4eff17c a0f57d6 5262349 b8c1a3d a0f57d6 dbd6fa0 a0f57d6 b8c1a3d a0f57d6 b8c1a3d a0f57d6 b8c1a3d 599725a a0f57d6 2528f91 dbd6fa0 b8c1a3d a0f57d6 dbd6fa0 b8c1a3d 2528f91 cfa8219 dbd6fa0 2528f91 5cac637 dbd6fa0 2528f91 dbd6fa0 2528f91 dbd6fa0 cfa8219 dbd6fa0 2528f91 b8c1a3d dbd6fa0 b8c1a3d dbd6fa0 b8c1a3d cfa8219 dbd6fa0 0df9635 a0f57d6 2528f91 a0f57d6 5262349 2528f91 5cac637 a0f57d6 70dd0f7 a0f57d6 2528f91 a0f57d6 5262349 2528f91 5cac637 a0f57d6 cfa8219 e8459e6 2528f91 373e394 b8c1a3d cfa8219 ce8cbe4 b8c1a3d ce8cbe4 a0f57d6 b8c1a3d a0f57d6 2528f91 5262349 0dfd0d1 b8c1a3d ce8cbe4 a0f57d6 0dfd0d1 b8c1a3d cfa8219 a0f57d6 8756ea3 ce8cbe4 8756ea3 cfa8219 b8c1a3d dbd6fa0 b8c1a3d 5262349 cfa8219 b8c1a3d cfa8219 b8c1a3d cfa8219 b8c1a3d cfa8219 b8c1a3d cfa8219 f106b2a b8c1a3d f106b2a b8c1a3d f106b2a b8c1a3d cfa8219 dbd6fa0 b8c1a3d 2528f91 b8c1a3d dbd6fa0 b8c1a3d dbd6fa0 2528f91 dbd6fa0 b8c1a3d 5262349 b8c1a3d a0f57d6 934dfd0 b8c1a3d 934dfd0 b8c1a3d b0ecca0 b8c1a3d 32f88a6 b0ecca0 b8c1a3d 5262fe7 851efc4 b8c1a3d 5262fe7 d1b242d b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 5262fe7 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d 32f88a6 b8c1a3d d1b242d 934dfd0 2528f91 ce8cbe4 a0f57d6 b8c1a3d a0f57d6 1dbd40f 851efc4 dbd6fa0 b8c1a3d a0f57d6 d4653f4 dbd6fa0 5262349 d4653f4 bca1246 b8c1a3d 2528f91 b8c1a3d dbd6fa0 5262349 b8c1a3d 851efc4 b8c1a3d dbd6fa0 2528f91 5262349 b8c1a3d 5262349 2528f91 d4653f4 b8c1a3d e8459e6 6dbcd3a b8c1a3d 32f88a6 b8c1a3d 2528f91 b8c1a3d dbd6fa0 2528f91 b8c1a3d 0596125 5262349 b8c1a3d cb1b9d8 b8c1a3d 0596125 a0f57d6 2528f91 6dbcd3a 851efc4 8756ea3 851efc4 2528f91 b8c1a3d 2528f91 cfa8219 a0f57d6 851efc4 a0f57d6 dbd6fa0 cfa8219 2528f91 b8c1a3d 2528f91 b8c1a3d 2528f91 b8c1a3d dbd6fa0 e8459e6 8756ea3 b8c1a3d dbd6fa0 5262349 e8459e6 8756ea3 d4653f4 b8c1a3d d4653f4 b8c1a3d d1b242d d4653f4 b8c1a3d d4653f4 b8c1a3d 49af09b b8c1a3d 14c3932 bca1246 b8c1a3d 32f88a6 b8c1a3d ce8cbe4 bca1246 b8c1a3d ce8cbe4 bca1246 14c3932 b8c1a3d ce8cbe4 b8c1a3d 14c3932 8756ea3 b8c1a3d bca1246 e5dc606 bca1246 b8c1a3d 14c3932 bca1246 14c3932 b8c1a3d ce8cbe4 b8c1a3d 8756ea3 b8c1a3d bca1246 8756ea3 bca1246 14c3932 8756ea3 b8c1a3d bca1246 e5dc606 bca1246 b8c1a3d 14c3932 b8c1a3d 14c3932 b8c1a3d 14c3932 b8c1a3d 14c3932 b8c1a3d 14c3932 e5dc606 ce8cbe4 b8c1a3d 14c3932 b8c1a3d 14c3932 b8c1a3d 14c3932 b8c1a3d 14c3932 a0f57d6 0596125 b8c1a3d f106b2a 49af09b b8c1a3d bca1246 b8c1a3d 934dfd0 e5dc606 bca1246 b8c1a3d bca1246 e5dc606 b8c1a3d 910909f bca1246 b8c1a3d 910909f 8756ea3 bca1246 b8c1a3d bca1246 8756ea3 b8c1a3d 8756ea3 bca1246 b8c1a3d bca1246 e5dc606 b8c1a3d 910909f f106b2a 934dfd0 f106b2a dbd6fa0 4eff17c 2528f91 b8c1a3d 2528f91 b8c1a3d 2528f91 f106b2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 |
import os
import re
import time
import json
import io
import requests
import logging
from typing import List, Dict, Any, Tuple, Optional, Literal, Generator
import gradio as gr
import google.generativeai as genai
from google.generativeai import types # Import types for configuration and tools
from huggingface_hub import create_repo, list_models, upload_file, constants
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
# --- Configure Logging ---
# Replace print() statements with logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# You could add a file handler here for persistent logs if needed, but console is fine for Spaces
# --- Configure Hugging Face API Retries ---
# Added retry strategy to make HF API calls more robust to transient errors
retry_strategy = Retry(total=5, backoff_factor=1, status_forcelist=[429, 500, 502, 503, 504]) # Define retry strategy for specific HTTP codes
adapter = HTTPAdapter(max_retries=retry_strategy)
session = get_session() # Get the session object used internally by huggingface_hub
session.mount("http://", adapter)
session.mount("https://", adapter)
# --- Define Gemini Model Information ---
GEMINI_MODELS = {
"gemini-1.5-flash": ("Gemini 1.5 Flash", "Fast and versatile performance across a diverse variety of tasks."),
"gemini-1.5-pro": ("Gemini 1.5 Pro", "Complex reasoning tasks requiring more intelligence."),
"gemini-1.5-flash-8b": ("Gemini 1.5 Flash 8B", "High volume and lower intelligence tasks."),
"gemini-2.0-flash": ("Gemini 2.0 Flash", "Next generation features, speed, thinking, realtime streaming, and multimodal generation."),
"gemini-2.0-flash-lite": ("Gemini 2.0 Flash-Lite", "Cost efficiency and low latency."),
# Note: Preview models might have shorter lifespans or different capabilities. Uncomment if you want to include them.
# "gemini-2.5-flash-preview-04-17": ("Gemini 2.5 Flash Preview (04-17)", "Adaptive thinking, cost efficiency."),
# "gemini-2.5-pro-preview-03-25": ("Gemini 2.5 Pro Preview (03-25)", "Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more."),
}
# Create the list of choices for the Gradio Radio component
GEMINI_MODEL_CHOICES = [(display_name, internal_name) for internal_name, (display_name, description) in GEMINI_MODELS.items()]
DEFAULT_GEMINI_MODEL = "gemini-1.5-flash"
# --- Helper functions for Hugging Face integration ---
def show_profile(profile: gr.OAuthProfile | None) -> str:
"""Displays the logged-in Hugging Face profile username."""
if profile is None:
return "*Not logged in.*"
return f"✅ Logged in as **{profile.username}**"
# list_private_models function is not used in the main workflow, kept as is.
def list_private_models(
profile: gr.OAuthProfile | None,
oauth_token: gr.OAuthToken | None
) -> str:
"""Lists private models for the logged-in user (not used in the main workflow, but kept)."""
if profile is None or oauth_token is None:
return "Please log in to see your models."
try:
models = [
f"{m.id} ({'private' if m.private else 'public'})"
for m in list_models(author=profile.username, token=oauth_token.token)
]
return "No models found." if not models else "Models:\n\n" + "\n - ".join(models)
except Exception as e:
logging.error(f"Error listing models: {e}")
return f"Error listing models: {e}"
def create_space_action(repo_name: str, sdk: str, profile: gr.OAuthProfile, token: gr.OAuthToken) -> Tuple[str, str]:
"""Creates a new Hugging Face Space repository."""
if not profile or not token:
# This should ideally not happen if button logic is correct, but kept as safeguard
raise ValueError("Hugging Face profile or token is missing.")
repo_id = f"{profile.username}/{repo_name}"
try:
logging.info(f"Attempting to create Space: {repo_id} with SDK: {sdk}")
create_repo(
repo_id=repo_id,
token=token.token,
exist_ok=True, # Allow creating if it already exists
repo_type="space",
space_sdk=sdk
)
url = f"https://huggingface.co/spaces/{repo_id}"
iframe = f'<iframe src="{url}" width="100%" height="500px"></iframe>'
logging.info(f"Successfully created/verified Space: {repo_id}")
return repo_id, iframe
except Exception as e:
logging.error(f"Failed to create Space {repo_id}: {e}")
# Catch specific HTTP errors from huggingface_hub if possible
if isinstance(e, requests.exceptions.HTTPError):
raise RuntimeError(f"HF API Error creating Space `{repo_id}`: {e.response.status_code} {e.response.reason}") from e
raise RuntimeError(f"Failed to create Space `{repo_id}`: {e}") from e # Re-raise as RuntimeError
def upload_file_to_space_action(
file_obj: io.StringIO, # Specify type hint for clarity
path_in_repo: str,
repo_id: str,
profile: gr.OAuthProfile,
token: gr.OAuthToken
) -> None:
"""Uploads a file to a Hugging Face Space repository."""
if not (profile and token and repo_id):
raise ValueError("Hugging Face profile, token, or repo_id is missing.")
try:
logging.info(f"Attempting to upload file: {path_in_repo} to Space: {repo_id}")
upload_file(
path_or_fileobj=file_obj,
path_in_repo=path_in_repo,
repo_id=repo_id,
token=token.token,
repo_type="space"
)
logging.info(f"Successfully uploaded file: {path_in_repo} to Space: {repo_id}")
except Exception as e:
logging.error(f"Failed to upload {path_in_repo} to {repo_id}: {e}")
if isinstance(e, requests.exceptions.HTTPError):
raise RuntimeError(f"HF API Error uploading {path_in_repo} to `{repo_id}`: {e.response.status_code} {e.response.reason}") from e
raise RuntimeError(f"Failed to upload `{path_in_repo}` to `{repo_id}`: {e}") from e
def _fetch_space_logs_level(repo_id: str, level: str, token: str) -> str:
"""Fetches build or run logs for a Space."""
if not repo_id or not token:
logging.warning(f"Cannot fetch {level} logs: repo_id or token missing.")
return f"Cannot fetch {level} logs: log in and create a Space first."
jwt_url = f"{constants.ENDPOINT}/api/spaces/{repo_id}/jwt"
try:
logging.info(f"Attempting to fetch {level} logs for Space: {repo_id}")
r = get_session().get(jwt_url, headers=build_hf_headers(token=token), timeout=10) # Added timeout
hf_raise_for_status(r) # Raise HTTPError for bad responses (4xx or 5xx)
jwt = r.json()["token"]
logs_url = f"https://api.hf.space/v1/{repo_id}/logs/{level}"
lines, count = [], 0
# Using stream=True is good for potentially large logs
with get_session().get(logs_url, headers=build_hf_headers(token=jwt), stream=True, timeout=30) as resp:
hf_raise_for_status(resp)
for raw in resp.iter_lines():
if count >= 200: # Limit output lines to prevent UI overload
lines.append("... truncated ...")
break
if not raw.startswith(b"data: "): # EventStream protocol expected from HF logs API
continue
payload = raw[len(b"data: "):]
try:
event = json.loads(payload.decode())
ts = event.get("timestamp", "")
txt = event.get("data", "").strip()
if txt:
lines.append(f"[{ts}] {txt}")
count += 1
except json.JSONDecodeError:
# Skip lines that aren't valid JSON events
logging.warning(f"Skipping non-JSON log line for {repo_id} ({level}): {payload.decode()}")
continue
log_output = "\n".join(lines) if lines else f"No {level} logs found."
logging.info(f"Successfully fetched {count} {level} log lines for {repo_id}")
return log_output
except Exception as e:
logging.error(f"Error fetching {level} logs for {repo_id}: {e}")
if isinstance(e, requests.exceptions.HTTPError):
return f"Error fetching {level} logs for `{repo_id}`: {e.response.status_code} {e.response.reason}"
if isinstance(e, requests.exceptions.Timeout):
return f"Timeout fetching {level} logs for `{repo_id}`. Space might be starting slowly."
return f"Error fetching {level} logs for `{repo_id}`: {e}"
def get_build_logs_action(repo_id, profile, token):
"""Action to fetch build logs with a small delay."""
if not (repo_id and profile and token):
return "⚠️ Cannot fetch build logs: log in and create a Space first."
# Small delay to allow build process to potentially start on HF side
time.sleep(5)
return _fetch_space_logs_level(repo_id, "build", token.token)
def get_container_logs_action(repo_id, profile, token):
"""Action to fetch container logs with a delay."""
if not (repo_id and profile and token):
return "⚠️ Cannot fetch container logs: log in and create a Space first."
# Longer delay to allow container to start after build completes
time.sleep(10)
return _fetch_space_logs_level(repo_id, "run", token.token)
# --- Google Gemini integration with model selection and grounding ---
def configure_gemini(api_key: str | None, model_name: str | None) -> str:
"""Configures the Gemini API and checks if the model is accessible."""
# Check for empty string "" as well as None
if not isinstance(api_key, str) or not api_key.strip():
logging.info("Gemini API key is not set.")
return "⚠️ Gemini API key is not set."
# Check if model_name is None or not a valid key in GEMINI_MODELS
if not model_name or model_name not in GEMINI_MODELS:
logging.warning(f"Invalid Gemini model selected: {model_name}")
return "⚠️ Please select a valid Gemini model."
try:
logging.info(f"Attempting to configure Gemini with model: {model_name}")
genai.configure(api_key=api_key)
# Attempt a simple call to verify credentials and model availability
# This will raise an exception if the key is invalid or model not found
genai.GenerativeModel(model_name).generate_content("ping", stream=False)
# This message indicates the API call *for configuration check* was successful
logging.info(f"Gemini configured successfully with model: {model_name}")
return f"✅ Gemini configured successfully with **{GEMINI_MODELS[model_name][0]}**."
except Exception as e:
# This message indicates the API call *for configuration check* failed
logging.error(f"Error configuring Gemini with model {model_name}: {e}")
# Catch specific Gemini errors if possible (e.g., authentication errors)
return f"❌ Error configuring Gemini: {e}"
def get_model_description(model_name: str | None) -> str:
"""Retrieves the description for a given model name."""
if model_name is None or model_name not in GEMINI_MODELS:
return "Select a model to see its description."
return GEMINI_MODELS.get(model_name, (model_name, "No description available."))[1]
def call_gemini(prompt: str, api_key: str, model_name: str, use_grounding: bool = False) -> str:
"""Calls the Gemini API with a given prompt, optionally using grounding."""
# These checks are crucial - they will raise an error *before* the API call if prereqs aren't met
if not isinstance(api_key, str) or not api_key.strip():
raise ValueError("Gemini API key is empty or invalid.")
if not model_name or model_name not in GEMINI_MODELS:
raise ValueError(f"Gemini model '{model_name}' is invalid or not selected.")
try:
logging.info(f"Calling Gemini model '{model_name}' (Grounding: {use_grounding}) with prompt (first 50 chars): '{prompt[:50]}...'")
genai.configure(api_key=api_key) # Re-configure just in case
model = genai.GenerativeModel(model_name)
tools_config = [types.Tool(google_search=types.GoogleSearch())] if use_grounding else None
response = model.generate_content(
prompt,
stream=False, # Using stream=False for simplicity in this workflow
tools=tools_config,
request_options={'timeout': 120} # Added timeout for API call
)
if response.prompt_feedback and response.prompt_feedback.block_reason:
logging.warning(f"Gemini API call blocked: {response.prompt_feedback.block_reason}")
raise RuntimeError(f"Gemini API call blocked: {response.prompt_feedback.block_reason}")
if not response.candidates:
if response.prompt_feedback and response.prompt_feedback.safety_ratings:
ratings = "; ".join([f"{r.category}: {r.probability}" for r in response.prompt_feedback.safety_ratings])
logging.warning(f"Gemini API call returned no candidates. Safety ratings: {ratings}")
raise RuntimeError(f"Gemini API call returned no candidates. Safety ratings: {ratings}")
else:
logging.warning("Gemini API call returned no candidates.")
raise RuntimeError("Gemini API call returned no candidates.")
generated_text = response.text or ""
logging.info(f"Gemini API call successful. Generated text length: {len(generated_text)}")
return generated_text
except Exception as e:
logging.error(f"Gemini API call failed: {e}")
# Re-raising as RuntimeError for the workflow to catch and manage
raise RuntimeError(f"Gemini API call failed: {e}") from e
# --- AI workflow logic (State Machine) ---
# Define States for the workflow using Literal for type safety
WorkflowState = Literal[
"idle", "awaiting_repo_name", "creating_space", "generating_code",
"uploading_app_py", "generating_requirements", "uploading_requirements",
"generating_readme", "uploading_readme", "checking_logs_build",
"checking_logs_run", "debugging_code", "uploading_fixed_app_py", "complete"
]
STATE_IDLE: WorkflowState = "idle"
STATE_AWAITING_REPO_NAME: WorkflowState = "awaiting_repo_name"
STATE_CREATING_SPACE: WorkflowState = "creating_space"
STATE_GENERATING_CODE: WorkflowState = "generating_code"
STATE_UPLOADING_APP_PY: WorkflowState = "uploading_app_py"
STATE_GENERATING_REQUIREMENTS: WorkflowState = "generating_requirements"
STATE_UPLOADING_REQUIREMENTS: WorkflowState = "uploading_requirements"
STATE_GENERATING_README: WorkflowState = "generating_readme"
STATE_UPLOADING_README: WorkflowState = "uploading_readme"
STATE_CHECKING_LOGS_BUILD: WorkflowState = "checking_logs_build"
STATE_CHECKING_LOGS_RUN: WorkflowState = "checking_logs_run"
STATE_DEBUGGING_CODE: WorkflowState = "debugging_code"
STATE_UPLOADING_FIXED_APP_PY: WorkflowState = "uploading_fixed_app_py"
STATE_COMPLETE: WorkflowState = "complete"
MAX_DEBUG_ATTEMPTS = 3 # Limit the number of automatic debug attempts
# Helper function to add a new assistant message to the chatbot history.
def add_bot_message(history: list[dict], bot_message: str) -> list[dict]:
# Make a copy to avoid modifying history in place if needed later, though generator pattern usually handles this
new_history = list(history)
new_history.append({"role": "assistant", "content": bot_message})
logging.info(f"Added bot message: {bot_message[:100]}...")
return new_history
# Add an initial welcome message to the chatbot (defined outside Blocks to be called by load chain)
def greet() -> List[Dict[str, str]]:
logging.info("Generating initial welcome message.")
return [{"role": "assistant", "content": "Welcome! Please log in to Hugging Face and provide your Google AI Studio API key to start building Spaces. Once ready, type 'generate me a gradio app called myapp' or 'create' to begin."}]
# Helper function to update send button interactivity based on prereqs
# This function has the clean signature it expects.
def check_send_button_ready(
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_key: str | None,
gemini_model: str | None,
workflow_state: WorkflowState # Also depend on workflow state
) -> gr.update: # Correct type hint for a Gradio update object
"""Checks if HF login and Gemini configuration are complete and returns update for button interactivity."""
# Button should NOT be interactive when workflow is running
if workflow_state != STATE_IDLE and workflow_state != STATE_AWAITING_REPO_NAME:
logging.debug(f"check_send_button_ready: Workflow state is {workflow_state}, disabling button.")
return gr.Button.update(interactive=False)
is_logged_in = hf_profile is not None and hf_token is not None
# Use strip() to handle cases where key is just whitespace
is_gemini_ready = isinstance(gemini_key, str) and bool(gemini_key.strip()) and bool(gemini_model)
is_ready = is_logged_in and is_gemini_ready
logging.debug(f"check_send_button_ready - HF Ready: {is_logged_in}, Gemini Ready: {is_gemini_ready}, Button Ready: {is_ready}")
# Button is interactive only in IDLE or AWAITING_REPO_NAME states AND when prereqs are met
return gr.Button.update(interactive=is_ready and (workflow_state == STATE_IDLE or workflow_state == STATE_AWAITING_REPO_NAME))
# --- State Handler Functions ---
# These functions encapsulate the logic for each state.
# They take all necessary inputs from the main generator's arguments
# and return the full tuple of outputs required by the generator's yield signature.
# Using Any for handler return type simplifies type hints since some yield and some return
# A more precise type would be Union[WorkflowOutputs, Generator[WorkflowOutputs, None, WorkflowOutputs]]
# But Gradio's type checking for generators is often loose anyway.
WorkflowHandlerReturn = Any
def package_workflow_outputs(
history: List[Dict[str, str]],
repo_id: Optional[str],
state: WorkflowState,
updated_preview: str,
updated_run: str,
updated_build: str,
attempts: int,
app_desc: Optional[str],
repo_name: Optional[str],
generated_code: Optional[str],
use_grounding: bool,
current_gemini_key: Optional[str], # Explicitly include these
current_gemini_model: Optional[str] # Explicitly include these
) -> WorkflowOutputs:
"""Helper to package all workflow state and UI outputs into the required tuple."""
return (history, repo_id, state, updated_preview, updated_run, updated_build,
attempts, app_desc, repo_name, generated_code, use_grounding,
current_gemini_key, current_gemini_model)
def handle_idle(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_IDLE
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args, # Catch potential extra args
**kwargs # Catch potential extra kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the IDLE state."""
logging.info(f"Handling STATE_IDLE with message: {message[:50]}...")
reset_match = "reset" in message.lower()
generate_match = re.search(r'generate (?:me )?(?:a|an) (.+) app called (\w+)', message, re.I)
create_match = re.search(r'create (?:a|an)? space called (\w+)', message, re.I) # Simple create command
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
if reset_match:
logging.info("Reset command received.")
history = add_bot_message(history, "Workflow reset.")
# Reset relevant states and UI outputs
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview="<p>No Space created yet.</p>", updated_run="", updated_build="",
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
elif generate_match:
logging.info("Generate command received.")
new_app_desc = generate_match.group(1).strip() # Capture description part
new_repo_name = generate_match.group(2).strip() # Capture name part
# Perform basic validation on repo name format
if not new_repo_name or re.search(r'[^a-zA-Z0-9_-]', new_repo_name) or len(new_repo_name) > 100:
logging.warning(f"Invalid repo name format received: {new_repo_name}")
history = add_bot_message(history, "Invalid name. Please provide a single word/slug for the Space name (letters, numbers, underscores, hyphens only, max 100 chars).")
# Stay in IDLE and yield message
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
history = add_bot_message(history, f"Acknowledged: '{message}'. Starting workflow to create Space `{hf_profile.username}/{new_repo_name}` for a '{new_app_desc}' app.")
logging.info(f"Transitioning to STATE_CREATING_SPACE for repo '{new_repo_name}' and description '{new_app_desc}'")
# Update state variables for the next step
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_CREATING_SPACE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=new_app_desc, repo_name=new_repo_name, generated_code=None, # Reset attempts and generated_code
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
elif create_match:
logging.info("Simple create command received.")
new_repo_name = create_match.group(1).strip()
# Perform basic validation on repo name format
if not new_repo_name or re.search(r'[^a-zA-Z0-9_-]', new_repo_name) or len(new_repo_name) > 100:
logging.warning(f"Invalid repo name format received: {new_repo_name}")
history = add_bot_message(history, "Invalid name. Please provide a single word/slug for the Space name (letters, numbers, underscores, hyphens only, max 100 chars).")
# Stay in IDLE and yield message
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
history = add_bot_message(history, f"Acknowledged: '{message}'. Starting workflow to create Space `{hf_profile.username}/{new_repo_name}`.")
logging.info(f"Transitioning to STATE_CREATING_SPACE for repo '{new_repo_name}'")
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_CREATING_SPACE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=app_description, repo_name=new_repo_name, generated_code=None, # Reset attempts and generated_code
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
elif "create" in message.lower() and not repo_id:
logging.info("Create command without name received.")
history = add_bot_message(history, "Okay, what should the Space be called? (e.g., `my-awesome-app`)")
logging.info("Transitioning to STATE_AWAITING_REPO_NAME")
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_AWAITING_REPO_NAME,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
logging.info("Command not recognized in IDLE state.")
history = add_bot_message(history, "Command not recognized. Try 'generate me a gradio app called myapp', or 'reset'.")
# Stay in IDLE state
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_awaiting_repo_name(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_AWAITING_REPO_NAME
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the AWAITING_REPO_NAME state."""
logging.info(f"Handling STATE_AWAITING_REPO_NAME with message: {message[:50]}...")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
new_repo_name = message.strip()
# Basic validation for Hugging Face repo name format
# Allow letters, numbers, hyphens, underscores, max 100 chars (HF limit check)
if not new_repo_name or re.search(r'[^a-zA-Z0-9_-]', new_repo_name) or len(new_repo_name) > 100:
logging.warning(f"Invalid repo name format received while awaiting name: {new_repo_name}")
history = add_bot_message(history, "Invalid name. Please provide a single word/slug for the Space name (letters, numbers, underscores, hyphens only, max 100 chars).")
# Stay in AWAITING_REPO_NAME state
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_AWAITING_REPO_NAME,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
history = add_bot_message(history, f"Using Space name `{new_repo_name}`. Creating Space `{hf_profile.username}/{new_repo_name}`...")
logging.info(f"Validated repo name '{new_repo_name}'. Transitioning to STATE_CREATING_SPACE.")
# Transition state to creation
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_CREATING_SPACE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=app_description, repo_name=new_repo_name, generated_code=None, # Reset attempts and generated_code
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_creating_space(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_CREATING_SPACE
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the CREATING_SPACE state."""
logging.info(f"Handling STATE_CREATING_SPACE for repo '{repo_name}'")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Ensure repo_name is available (it should have been set in the previous step)
if not repo_name:
logging.error("Internal error: Repo name missing in STATE_CREATING_SPACE. Resetting.")
history = add_bot_message(history, "Internal error: Repo name missing for creation. Resetting.")
# Reset state on error
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview="<p>Error creating space.</p>", updated_run="", updated_build="",
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
try:
new_repo_id, iframe_html = create_space_action(repo_name, space_sdk, hf_profile, hf_token)
history = add_bot_message(history, f"✅ Space `{new_repo_id}` created. Click 'Send' to generate and upload code.")
logging.info(f"Space '{new_repo_id}' created. Transitioning to STATE_GENERATING_CODE.")
# Update state variables for the next step (generation)
return package_workflow_outputs(
history=history, repo_id=new_repo_id, state=STATE_GENERATING_CODE,
updated_preview=iframe_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors raised by actions
logging.error(f"Caught RuntimeError creating space: {e}")
history = add_bot_message(history, f"❌ Error creating space: {e}. Click 'reset'.")
# Reset state on error
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview="<p>Error creating space.</p>", updated_run="", updated_build="",
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_generating_code(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_GENERATING_CODE
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the GENERATING_CODE state."""
logging.info("Handling STATE_GENERATING_CODE")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Define the prompt for Gemini based on the app description or a default
prompt_desc = app_description if app_description else f'a simple {space_sdk} app'
prompt = f"""
You are an AI assistant specializing in Hugging Face Spaces using the {space_sdk} SDK.
Generate a full, single-file Python app based on:
'{prompt_desc}'
Ensure the code is runnable as `app.py` in a Hugging Face Space using the `{space_sdk}` SDK. Include necessary imports and setup.
Return **only** the python code block for `app.py`. Do not include any extra text, explanations, or markdown outside the code block.
"""
try:
history = add_bot_message(history, f"🧠 Generating `{prompt_desc}` `{space_sdk}` app (`app.py`) code with Gemini...")
if use_grounding:
history = add_bot_message(history, "(Using Grounding with Google Search)")
# Yield message before API call to show immediate feedback
# Use package_workflow_outputs to construct the tuple
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
code = call_gemini(prompt, current_gemini_key, current_gemini_model, use_grounding=use_grounding)
code = code.strip()
# Clean up markdown code blocks
code = re.sub(r'^```python\s*', '', code, flags=re.MULTILINE).strip()
code = re.sub(r'^```\s*', '', code, flags=re.MULTILINE).strip() # Catch generic code blocks too
code = re.sub(r'\s*```$', '', code, flags=re.MULTILINE).strip()
if not code:
logging.warning("Gemini returned empty code.")
raise ValueError("Gemini returned empty code.")
history = add_bot_message(history, "✅ `app.py` code generated. Click 'Send' to upload.")
logging.info("Code generated. Transitioning to STATE_UPLOADING_APP_PY.")
# Transition state and store generated code
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_UPLOADING_APP_PY,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors from call_gemini
logging.error(f"Caught RuntimeError generating code: {e}")
history = add_bot_message(history, f"❌ Error generating code: {e}. Click 'reset'.")
# Reset state on error
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_uploading_app_py(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_UPLOADING_APP_PY
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None, # This should hold the code to upload
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the UPLOADING_APP_PY state."""
logging.info("Handling STATE_UPLOADING_APP_PY")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Retrieve the generated code from the state variable
code_to_upload = generated_code
if not code_to_upload:
logging.error("Internal error: No code to upload in STATE_UPLOADING_APP_PY. Resetting.")
history = add_bot_message(history, "Internal error: No code to upload. Resetting.")
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
history = add_bot_message(history, "☁️ Uploading `app.py`...")
# Yield message before upload
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
try:
upload_file_to_space_action(io.StringIO(code_to_upload), "app.py", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `app.py`. Click 'Send' to generate requirements.")
logging.info("app.py uploaded. Transitioning to STATE_GENERATING_REQUIREMENTS.")
# Transition state, clear generated code after use
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_GENERATING_REQUIREMENTS,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors from upload_file_to_space_action
logging.error(f"Caught RuntimeError uploading app.py: {e}")
history = add_bot_message(history, f"❌ Error uploading `app.py`: {e}. Click 'reset'.")
# Reset state on error
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_generating_requirements(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_GENERATING_REQUIREMENTS
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the GENERATING_REQUIREMENTS state."""
logging.info("Handling STATE_GENERATING_REQUIREMENTS")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
history = add_bot_message(history, "📄 Generating `requirements.txt`...")
# Yield message before generating requirements
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# Logic to determine required packages based on SDK and keywords in the app description
reqs_list = ["gradio"] if space_sdk == "gradio" else ["streamlit"]
# Add essential libraries regardless of description keywords or grounding
essential_libs = ["google-generativeai", "huggingface_hub"]
reqs_list.extend(essential_libs)
# Add common libraries if description suggests they might be needed
if app_description:
app_desc_lower = app_description.lower()
if "requests" in app_desc_lower or "api" in app_desc_lower:
reqs_list.append("requests")
if "image" in app_desc_lower or "upload" in app_desc_lower or "blur" in app_desc_lower or "vision" in app_desc_lower or "photo" in app_desc_lower:
reqs_list.append("Pillow")
if "numpy" in app_desc_lower: reqs_list.append("numpy")
if "pandas" in app_desc_lower or "dataframe" in app_desc_lower: reqs_list.append("pandas")
if any(lib in app_desc_lower for lib in ["scikit-image", "skimage", "cv2", "opencv"]):
reqs_list.extend(["scikit-image", "opencv-python"])
if any(lib in app_desc_lower for lib in ["transformer", "llama", "mistral", "bert", "gpt2"]):
reqs_list.append("transformers")
if any(lib in app_desc_lower for lib in ["torch", "pytorch", "tensorflow", "keras"]):
reqs_list.extend(["torch", "tensorflow"]) # Consider adding specific hardware versions if needed
# Use dict.fromkeys to get unique items while preserving insertion order (Python 3.7+)
reqs_list = list(dict.fromkeys(reqs_list))
# Sort alphabetically for cleaner requirements.txt
reqs_list.sort()
reqs_content = "\n".join(reqs_list) + "\n"
history = add_bot_message(history, "✅ `requirements.txt` generated. Click 'Send' to upload.")
logging.info("requirements.txt generated. Transitioning to STATE_UPLOADING_REQUIREMENTS.")
# Transition state and store requirements content
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_UPLOADING_REQUIREMENTS,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=reqs_content,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_uploading_requirements(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_UPLOADING_REQUIREMENTS
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None, # This should hold the requirements content
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the UPLOADING_REQUIREMENTS state."""
logging.info("Handling STATE_UPLOADING_REQUIREMENTS")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Retrieve requirements content from state variable
reqs_content_to_upload = generated_code
if not reqs_content_to_upload:
logging.error("Internal error: No requirements content to upload in STATE_UPLOADING_REQUIREMENTS. Resetting.")
history = add_bot_message(history, "Internal error: No requirements content to upload. Resetting.")
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
history = add_bot_message(history, "☁️ Uploading `requirements.txt`...")
# Yield message before upload
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
try:
# Perform requirements file upload
upload_file_to_space_action(io.StringIO(reqs_content_to_upload), "requirements.txt", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `requirements.txt`. Click 'Send' to generate README.")
logging.info("requirements.txt uploaded. Transitioning to STATE_GENERATING_README.")
# Transition state, clear generated code after use
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_GENERATING_README,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors
logging.error(f"Caught RuntimeError uploading requirements.txt: {e}")
history = add_bot_message(history, f"❌ Error uploading `requirements.txt`: {e}. Click 'reset'.")
# Yield error message and reset state on failure
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_generating_readme(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_GENERATING_README
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the GENERATING_README state."""
logging.info("Handling STATE_GENERATING_README")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
history = add_bot_message(history, "📝 Generating `README.md`...")
# Yield message before generating README
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# Generate simple README content with Space metadata header
readme_title = repo_name if repo_name else "My Awesome Space"
readme_description = app_description if app_description else f"This Hugging Face Space hosts an AI-generated {space_sdk} application."
readme_content = f"""---
title: {readme_title}
emoji: 🚀
colorFrom: blue
colorTo: yellow
sdk: {space_sdk}
app_file: app.py
pinned: false
---
# {readme_title}
{readme_description}
This Space was automatically generated by an AI workflow using Google Gemini and Gradio.
"""
history = add_bot_message(history, "✅ `README.md` generated. Click 'Send' to upload.")
logging.info("README.md generated. Transitioning to STATE_UPLOADING_README.")
# Transition state and store README content
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_UPLOADING_README,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=readme_content,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_uploading_readme(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_UPLOADING_README
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None, # This should hold the README content
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the UPLOADING_README state."""
logging.info("Handling STATE_UPLOADING_README")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Retrieve README content from state variable
readme_content_to_upload = generated_code
if not readme_content_to_upload:
logging.error("Internal error: No README content to upload in STATE_UPLOADING_README. Resetting.")
history = add_bot_message(history, "Internal error: No README content to upload. Resetting.")
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
history = add_bot_message(history, "☁️ Uploading `README.md`...")
# Yield message before upload
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
try:
# Perform README file upload
upload_file_to_space_action(io.StringIO(readme_content_to_upload), "README.md", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Uploaded `README.md`. All files uploaded. Space is now building. Click 'Send' to check build logs.")
logging.info("README.md uploaded. Transitioning to STATE_CHECKING_LOGS_BUILD.")
# Transition to checking build logs, clear content after use
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_CHECKING_LOGS_BUILD,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors
logging.error(f"Caught RuntimeError uploading README.md: {e}")
history = add_bot_message(history, f"❌ Error uploading `README.md`: {e}. Click 'reset'.")
# Yield error message and reset state on failure
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_checking_logs_build(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_CHECKING_LOGS_BUILD
space_sdk: str,
preview_html: str,
container_logs: str, # Current UI value
build_logs: str, # Current UI value
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the CHECKING_LOGS_BUILD state."""
logging.info(f"Handling STATE_CHECKING_LOGS_BUILD for repo '{repo_id}'")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
history = add_bot_message(history, "🔍 Fetching build logs...")
# Yield message before fetching logs (which includes a delay)
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# Fetch build logs from HF Space
build_logs_text = get_build_logs_action(repo_id, hf_profile, hf_token)
updated_build = build_logs_text # Update the logs display variable
# Simple check for common error indicators in logs (case-insensitive)
if "error" in updated_build.lower() or "exception" in updated_build.lower() or "build failed" in updated_build.lower():
logging.warning("Build logs indicate potential issues.")
history = add_bot_message(history, "⚠️ Build logs indicate potential issues. Please inspect above. Click 'Send' to check container logs (app might still start despite build warnings).")
state = STATE_CHECKING_LOGS_RUN # Transition even on build error, to see if container starts
logging.info("Build logs show issues. Transitioning to STATE_CHECKING_LOGS_RUN.")
# Yield updated state, logs, and variables
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=updated_build, # Updated build logs
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
logging.info("Build logs appear clean.")
history = add_bot_message(history, "✅ Build logs fetched. Click 'Send' to check container logs.")
state = STATE_CHECKING_LOGS_RUN # Transition to next log check
logging.info("Transitioning to STATE_CHECKING_LOGS_RUN.")
# Yield updated state, logs, and variables
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=updated_build, # Updated build logs
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_checking_logs_run(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_CHECKING_LOGS_RUN
space_sdk: str,
preview_html: str,
container_logs: str, # Current UI value
build_logs: str, # Current UI value
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the CHECKING_LOGS_RUN state."""
logging.info(f"Handling STATE_CHECKING_LOGS_RUN for repo '{repo_id}'")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
history = add_bot_message(history, "🔍 Fetching container logs...")
# Yield message before fetching logs (includes a delay)
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# Fetch container logs from HF Space
container_logs_text = get_container_logs_action(repo_id, hf_profile, hf_token)
updated_run = container_logs_text # Update the logs display variable
# Check for errors in run logs and if we have debug attempts left
if ("error" in updated_run.lower() or "exception" in updated_run.lower()) and debug_attempts < MAX_DEBUG_ATTEMPTS:
new_attempts = debug_attempts + 1 # Increment debug attempts counter
logging.warning(f"Errors detected in container logs. Attempting debug fix #{new_attempts}.")
history = add_bot_message(history, f"❌ Errors detected in container logs. Attempting debug fix #{new_attempts}/{MAX_DEBUG_ATTEMPTS}. Click 'Send' to proceed.")
state = STATE_DEBUGGING_CODE # Transition to the debugging state
logging.info("Transitioning to STATE_DEBUGGING_CODE.")
# Yield updated state, logs, attempts, and variables
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=updated_run, updated_build=build_logs, # Updated run logs
attempts=new_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
elif ("error" in updated_run.lower() or "exception" in updated_run.lower()) and debug_attempts >= MAX_DEBUG_ATTEMPTS:
# Max debug attempts reached
logging.error(f"Errors detected in container logs. Max debug attempts ({MAX_DEBUG_ATTEMPTS}) reached.")
history = add_bot_message(history, f"❌ Errors detected in container logs. Max debug attempts ({MAX_DEBUG_ATTEMPTS}) reached. Please inspect logs manually or click 'reset'.")
state = STATE_COMPLETE # Workflow ends on failure after attempts
logging.info("Max debug attempts reached. Transitioning to STATE_COMPLETE.")
# Yield updated state, logs, attempts, and variables
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=updated_run, updated_build=build_logs, # Updated run logs
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
# No significant errors found in logs, assume success
logging.info("No significant errors found in run logs.")
history = add_bot_message(history, "✅ App appears to be running successfully! Check the iframe above. Click 'reset' to start a new project.")
state = STATE_COMPLETE # Workflow ends on success
logging.info("Transitioning to STATE_COMPLETE.")
# Yield updated state, logs, attempts, and variables
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=updated_run, updated_build=build_logs, # Updated run logs
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_debugging_code(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_DEBUGGING_CODE
space_sdk: str,
preview_html: str,
container_logs: str, # Current UI value (contains logs to debug from)
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the DEBUGGING_CODE state."""
logging.info(f"Handling STATE_DEBUGGING_CODE (attempt #{debug_attempts}) for repo '{repo_id}'")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
history = add_bot_message(history, f"🧠 Calling Gemini to generate fix based on logs...")
if use_grounding:
history = add_bot_message(history, "(Using Grounding with Google Search)")
# Yield message before Gemini API call
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# Construct prompt for Gemini including the container logs
debug_prompt = f"""
You are debugging a {space_sdk} Space. The goal is to fix the code in `app.py` based on the container logs provided.
Here are the container logs:
Use code with caution.
Python
{container_logs}
Generate the *complete, fixed* content for `app.py` based on these logs.
Return **only** the python code block for app.py. Do not include any extra text, explanations, or markdown outside the code block.
"""
try:
# Call Gemini to generate the corrected code, optionally using grounding
# Note: Grounding might be less effective for debugging based *only* on logs,
# but we include the option as requested.
# Use the current_gemini_key and current_gemini_model derived from state inputs
fix_code = call_gemini(debug_prompt, current_gemini_key, current_gemini_model, use_grounding=use_grounding)
fix_code = fix_code.strip()
# Clean up potential markdown formatting
fix_code = re.sub(r'^```python\s*', '', fix_code, flags=re.MULTILINE).strip()
fix_code = re.sub(r'^```\s*', '', fix_code, flags=re.MULTILINE).strip()
fix_code = re.sub(r'\s*```$', '', fix_code, flags=re.MULTILINE).strip()
if not fix_code:
logging.warning("Gemini returned empty fix code.")
raise ValueError("Gemini returned empty fix code.")
history = add_bot_message(history, "✅ Fix code generated. Click 'Send' to upload.")
logging.info("Fix code generated. Transitioning to STATE_UPLOADING_FIXED_APP_PY.")
# Transition to the upload state for the fix, store generated code
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_UPLOADING_FIXED_APP_PY,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=fix_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors
logging.error(f"Caught RuntimeError generating debug code: {e}")
history = add_bot_message(history, f"❌ Error generating debug code: {e}. Click 'reset'.")
# Yield error message and reset state on failure
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_uploading_fixed_app_py(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_UPLOADING_FIXED_APP_PY
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None, # This should hold the fixed code
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the UPLOADING_FIXED_APP_PY state."""
logging.info(f"Handling STATE_UPLOADING_FIXED_APP_PY for repo '{repo_id}'")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# Retrieve the fixed code from the state variable
fixed_code_to_upload = generated_code
if not fixed_code_to_upload:
logging.error("Internal error: No fixed code available to upload in STATE_UPLOADING_FIXED_APP_PY. Resetting.")
history = add_bot_message(history, "Internal error: No fixed code available to upload. Resetting.")
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
history = add_bot_message(history, "☁️ Uploading fixed `app.py`...")
# Yield message before upload
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
try:
# Perform the upload of the fixed app.py
upload_file_to_space_action(io.StringIO(fixed_code_to_upload), "app.py", repo_id, hf_profile, hf_token)
history = add_bot_message(history, "✅ Fixed `app.py` uploaded. Space will rebuild. Click 'Send' to check logs again.")
state = STATE_CHECKING_LOGS_RUN # Go back to checking run logs after uploading the fix
logging.info("Fixed app.py uploaded. Transitioning to STATE_CHECKING_LOGS_RUN.")
# Transition state, clear code after use
return package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except RuntimeError as e: # Catch specific RuntimeErrors
logging.error(f"Caught RuntimeError uploading fixed app.py: {e}")
history = add_bot_message(history, f"❌ Error uploading fixed `app.py`: {e}. Click 'reset'.")
# Yield error message and reset state on failure
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
def handle_complete(
message: str, # User might type something in COMPLETE state
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id: str | None,
state: WorkflowState, # Should be STATE_COMPLETE
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str,
debug_attempts: int,
app_description: str | None,
repo_name: str | None,
generated_code: str | None,
use_grounding: bool,
*args,
**kwargs
) -> WorkflowHandlerReturn:
"""Handles logic when in the COMPLETE state."""
logging.info("Handling STATE_COMPLETE")
current_gemini_key = gemini_api_key # Use the input vars directly
current_gemini_model = gemini_model
# If the user types something in the complete state, maybe interpret it?
# For now, we'll just stay in COMPLETE unless they type 'reset'.
if "reset" in message.lower():
logging.info("Reset command received in COMPLETE state.")
history = add_bot_message(history, "Workflow reset.")
# Reset relevant states and UI outputs
return package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview="<p>No Space created yet.</p>", updated_run="", updated_build="",
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
else:
# Stay in COMPLETE state
history = add_bot_message(history, "Workflow is complete. Type 'reset' to start a new project.")
return package_workflow_outputs(
history=history, repo_id=repo_id, state=STATE_COMPLETE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=debug_attempts, app_desc=app_description, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
# --- Dispatch Table ---
STATE_HANDLERS: Dict[WorkflowState, Any] = { # Use Any for type hint simplicity here
STATE_IDLE: handle_idle,
STATE_AWAITING_REPO_NAME: handle_awaiting_repo_name,
STATE_CREATING_SPACE: handle_creating_space,
STATE_GENERATING_CODE: handle_generating_code,
STATE_UPLOADING_APP_PY: handle_uploading_app_py,
STATE_GENERATING_REQUIREMENTS: handle_generating_requirements,
STATE_UPLOADING_REQUIREMENTS: handle_uploading_requirements,
STATE_GENERATING_README: handle_generating_readme,
STATE_UPLOADING_README: handle_uploading_readme,
STATE_CHECKING_LOGS_BUILD: handle_checking_logs_build,
STATE_CHECKING_LOGS_RUN: handle_checking_logs_run,
STATE_DEBUGGING_CODE: handle_debugging_code,
STATE_UPLOADING_FIXED_APP_PY: handle_uploading_fixed_app_py,
STATE_COMPLETE: handle_complete,
}
# This is the main generator function for the workflow, triggered by the 'Send' button
# Inputs and Outputs list must match exactly. The generator receives values from the inputs list.
def ai_workflow_chat(
message: str,
history: List[Dict[str, str]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
# Pass gemini_api_key and gemini_model as inputs - these come from the State variables
gemini_api_key_state: str | None,
gemini_model_state: str | None,
repo_id_state: str | None,
workflow_state: WorkflowState, # Use the Literal type hint
space_sdk: str,
# NOTE: UI component values are passed *by value* to the generator
preview_html: str, # Value from iframe HTML
container_logs: str, # Value from run_txt Textbox
build_logs: str, # Value from build_txt Textbox
debug_attempts_state: int,
app_description_state: str | None,
repo_name_state: str | None,
generated_code_state: str | None,
use_grounding_state: bool, # Value from use_grounding_checkbox
# Accept any extra args/kwargs passed by Gradio, common for generators
*args,
**kwargs
) -> Any: # Use Any because it yields multiple times before returning the final value (None in this case)
"""
Generator function to handle the AI workflow state machine.
Each 'yield' pauses execution and sends values to update Gradio outputs/state.
"""
# Unpack state variables and UI values from Gradio inputs
repo_id = repo_id_state
state = workflow_state
attempts = debug_attempts_state
app_desc = app_description_state
repo_name = repo_name_state
generated_code = generated_code_state
use_grounding = use_grounding_state
current_gemini_key = gemini_api_key_state
current_gemini_model = gemini_model_state
logging.info(f"ai_workflow_chat generator started. State: {state}, Message: {message[:50]}...")
# Log all inputs for debugging if needed
# logging.debug(f"ai_workflow_chat inputs: {locals()}")
# Add the user's message to the chat history immediately
user_message_entry = {"role": "user", "content": message}
if hf_profile and hf_profile.username:
user_message_entry["name"] = hf_profile.username
history.append(user_message_entry)
logging.debug("User message added to history.")
# Yield immediately to update the chat UI with the user's message
# This provides immediate feedback to the user while the AI processes
# Ensure all state variables and UI outputs are yielded back in the correct order
yield package_workflow_outputs(
history=history, repo_id=repo_id, state=state,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs,
attempts=attempts, app_desc=app_desc, repo_name=repo_name, generated_code=generated_code,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
try:
# --- State Machine Logic using Dispatch Table ---
handler = STATE_HANDLERS.get(state)
if handler:
logging.debug(f"Invoking handler for state: {state}")
# Call the state handler function, passing all necessary data
# Need to pass *all* inputs to the handler function
# Note: The inputs passed here are the *current* values received by the generator,
# which are the values of the UI components and State variables
# at the moment the button was clicked, plus any previous yielded state.
handler_output = handler(
message=message, history=history,
hf_profile=hf_profile, hf_token=hf_token,
gemini_api_key=current_gemini_key, gemini_model=current_gemini_model, # Pass current values
repo_id=repo_id, state=state, space_sdk=space_sdk,
preview_html=preview_html, container_logs=container_logs, build_logs=build_logs, # Pass current UI values
debug_attempts=attempts, app_description=app_desc, repo_name=repo_name, generated_code=generated_code, # Pass current state values
use_grounding=use_grounding
)
# The handler might yield intermediate updates (e.g., "Generating...")
if isinstance(handler_output, Generator):
# If the handler is also a generator, yield from it
logging.debug("Handler is a generator, yielding from it.")
yield from handler_output
else:
# If the handler returned the final tuple for this step, yield it
logging.debug("Handler returned final output tuple, yielding it.")
yield handler_output
else:
logging.error(f"No handler found for state: {state}. Resetting.")
# Fallback for unknown state
history = add_bot_message(history, f"Internal error: Unknown state `{state}`. Resetting.")
yield package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview="<p>Error: Unknown state.</p>", updated_run="", updated_build="",
attempts=0, app_desc=None, repo_name=None, generated_code=None,
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model
)
except Exception as e:
# This catches any unexpected errors that occur within any state's logic
# Specific errors from helper functions (like RuntimeError) should ideally be caught in handlers,
# but this is a safety net.
error_message = f"Workflow step failed unexpectedly ({state}): {e}. Click 'Send' to re-attempt this step or 'reset'."
history = add_bot_message(history, error_message)
logging.exception(f"Critical Error caught in ai_workflow_chat generator for state {state}") # Log with traceback
# On unexpected error, reset to IDLE, but pass through the current Gemini state
yield package_workflow_outputs(
history=history, repo_id=None, state=STATE_IDLE,
updated_preview=preview_html, updated_run=container_logs, updated_build=build_logs, # Keep existing UI logs
attempts=0, app_desc=None, repo_name=None, generated_code=None, # Reset project-specific states
use_grounding=use_grounding, current_gemini_key=current_gemini_key, current_gemini_model=current_gemini_model # Pass through Gemini states
)
# --- Build the Gradio UI ---
with gr.Blocks(title="AI-Powered HF Space App Builder") as ai_builder_tab:
# Gradio State variables - these persist their values across user interactions (clicks)
hf_profile = gr.State(None)
hf_token = gr.State(None)
gemini_api_key_state = gr.State("") # start with no key
gemini_model_state = gr.State(DEFAULT_GEMINI_MODEL) # Default selected model
repo_id = gr.State(None) # Stores the ID of the created Space
workflow = gr.State(STATE_IDLE, live=True) # Stores the current state, live update for status_text
sdk_state = gr.State("gradio") # Stores the selected Space SDK (Gradio or Streamlit)
debug_attempts = gr.State(0) # Counter for how many debugging attempts have been made
app_description = gr.State(None) # Stores the user's initial description of the desired app
repo_name_state = gr.State(None) # Stores the chosen repository name for the Space
generated_code_state = gr.State(None) # Temporary storage for generated file content (app.py, reqs, README)
use_grounding_state = gr.State(False)
with gr.Row():
with gr.Column(scale=1, min_width=300):
gr.Markdown("## Hugging Face Login")
login_status = gr.Markdown("*Not logged in.*")
login_btn = gr.LoginButton(variant="huggingface")
gr.Markdown("## Google AI Studio / Gemini")
gemini_input = gr.Textbox(
label="Your Google AI Studio API Key",
type="password",
interactive=True,
value="",
info="Enter your own key here"
)
gemini_status = gr.Markdown("")
model_selector = gr.Radio(
choices=GEMINI_MODEL_CHOICES,
value=DEFAULT_GEMINI_MODEL,
label="Select model",
interactive=True
)
model_description_text = gr.Markdown(get_model_description(DEFAULT_GEMINI_MODEL))
use_grounding_checkbox = gr.Checkbox(
label="Enable Grounding with Google Search",
value=False,
interactive=True,
info="Use Google Search results to inform Gemini's response (may improve factuality)."
)
gr.Markdown("## Space SDK")
sdk_selector = gr.Radio(choices=["gradio","streamlit"], value="gradio", label="Template SDK", interactive=True)
gr.Markdown("## Workflow Status")
status_text = gr.Textbox(label="Current State", value=STATE_IDLE, interactive=False)
repo_id_text = gr.Textbox(label="Current Space ID", value="None", interactive=False)
with gr.Column(scale=3):
chatbot = gr.Chatbot(type='messages', label="AI Workflow Chat")
user_input = gr.Textbox(placeholder="Type your message…", interactive=True)
send_btn = gr.Button("Send", interactive=False)
iframe = gr.HTML("<p>No Space created yet.</p>")
build_txt = gr.Textbox(label="Build Logs", lines=10, interactive=False, value="", max_lines=20)
run_txt = gr.Textbox(label="Container Logs", lines=10, interactive=False, value="", max_lines=20)
# --- Define Event Handlers and Chains ---
# List of prerequisite State components for the send button logic
prerequisite_states_for_button = [
hf_profile, hf_token, gemini_api_key_state, gemini_model_state, workflow # Add workflow state
]
# Use the pattern suggested in the feedback: wire each dependency change to the same handler
for state_comp in prerequisite_states_for_button:
# Create a lambda that captures the list of states at the time it's defined
# This lambda will be called by Gradio and receives the new value of the changed component first,
# followed by the values of the components in 'inputs'.
# We pass ALL prerequisite states (including the one that changed) to the lambda's inputs.
# The lambda then passes the *explicitly listed* input values from the 'states' list closure
# to the target function, check_send_button_ready.
state_comp.change(
lambda *args, states=prerequisite_states_for_button: check_send_button_ready(
states[0], states[1], states[2], states[3], states[4] # Pass values from the 'states' list closure
),
inputs=prerequisite_states_for_button, # Pass all required states
outputs=[send_btn], # Update only the send button
)
# Add a debug log to confirm wiring (optional debug)
# logging.debug(f"Wired {state_comp.label}.change to check_send_button_ready.")
# Handle login button click: Update profile/token state -> Their .change handlers trigger check_send_button_ready
login_btn.click(
# Lambda takes the LoginButton output (profile, token tuple) which is 2 args: (profile, token)
lambda profile, token: (profile, token),
inputs=[login_btn],
outputs=[hf_profile, hf_token]
) # The .change handlers on hf_profile and hf_token will trigger check_send_button_ready
# Handle Gemini Key Input change: Update key state -> Configure Gemini status
gemini_input.change(
# Lambda receives the new value of gemini_input (1 arg) because inputs=[gemini_input]
lambda new_key_value: new_key_value,
inputs=[gemini_input], # Explicitly pass the changed component for clarity
outputs=[gemini_api_key_state] # This output updates the state
).then(
# Configure Gemini using the updated state variables
# Lambda receives (prev_output, api_key_val_from_state, model_name_val_from_state)
# The prev_output is the new key value from the previous step's output (gemini_api_key_state)
# We use the explicit inputs instead of prev_output for robustness.
lambda prev_output, api_key_val_from_state, model_name_val_from_state: configure_gemini(api_key_val_from_state, model_name_val_from_state),
inputs=[gemini_api_key_state, gemini_model_state], # Explicitly pass the required states
outputs=[gemini_status] # Update Gemini status display.
) # The gemini_api_key_state.change handler (wired in the loop above) handles button updates.
# Handle Gemini Model Selector change: Update model state -> Update description -> Configure Gemini status
model_selector.change(
# Lambda receives the new value of model_selector (1 arg) because inputs=[model_selector]
lambda new_model_name: new_model_name,
inputs=[model_selector], # Explicitly pass the changed component for clarity
outputs=[gemini_model_state] # This output updates the state
).then(
# Update the model description display
# Lambda receives (prev_output, model_name_val_from_state)
# The prev_output is the new model name from the previous step's output (gemini_model_state)
# We use the explicit inputs instead of prev_output for robustness.
lambda prev_output, model_name_val_from_state: get_model_description(model_name_val_from_state),
inputs=[gemini_model_state], # Get the new state value
outputs=[model_description_text] # Update description UI.
).then(
# Configure Gemini using the updated state variables
# Lambda receives (prev_output, api_key_val_from_state, model_name_val_from_state)
# The prev_output is the description text from the previous step.
# We use the explicit inputs instead of prev_output for robustness.
lambda prev_output, api_key_val_from_state, model_name_val_from_state: configure_gemini(api_key_val_from_state, model_name_val_from_state),
inputs=[gemini_api_key_state, gemini_model_state], # Explicitly pass the required states
outputs=[gemini_status] # Update Gemini status display.
) # The gemini_model_state.change handler (wired in the loop above) handles button updates.
# Handle Grounding checkbox change: update grounding state
use_grounding_checkbox.change(
lambda v: v, inputs=[use_grounding_checkbox], outputs=[use_grounding_state] # Use lists for inputs/outputs
)
# Handle SDK selector change: update sdk state
sdk_selector.change(
lambda s: s, inputs=[sdk_selector], outputs=[sdk_state] # Use lists for inputs/outputs
)
# Link Workflow State variable change to UI status display
workflow.change(
lambda new_state_value: new_state_value,
inputs=[workflow], # Use lists for inputs
outputs=[status_text] # Use lists for outputs
)
# Link Repo ID State variable change to UI status display
repo_id.change(
lambda new_repo_id_value: new_repo_id_value if new_repo_id_value else "None",
inputs=[repo_id], # Use lists for inputs
outputs=[repo_id_text] # Use lists for outputs
)
# The main event handler for the Send button (generator)
# This .click() event triggers the ai_workflow_chat generator function
# Inputs are read from UI components AND State variables
# Outputs are updated by the values yielded from the generator
# Ensure inputs and outputs match the ai_workflow_chat signature and yield tuple EXACTLY.
# This call is direct, not in a .then() chain, so it does NOT receive a prev_output arg.
# It receives args only from the inputs list.
send_btn_inputs = [
user_input, chatbot, # UI component inputs (message, current chat history)
hf_profile, hf_token, # HF State variables
gemini_api_key_state, gemini_model_state, # Gemini State variables
repo_id, workflow, sdk_state, # Workflow State variables
iframe, run_txt, build_txt, # UI component inputs (current values)
debug_attempts, app_description, repo_name_state, generated_code_state, # Other State variables
use_grounding_state # Grounding state input
]
send_btn_outputs = [
chatbot, # Updates Chatbot
repo_id, workflow, # Updates State variables (repo_id, workflow)
iframe, run_txt, build_txt, # Updates UI components (iframe, logs)
debug_attempts, app_description, repo_name_state, generated_code_state, # Updates other State variables
use_grounding_state, # Updates Grounding state
gemini_api_key_state, gemini_model_state # Updates Gemini State variables - these are passed through the generator
]
send_btn.click(
ai_workflow_chat,
inputs=send_btn_inputs,
outputs=send_btn_outputs
).success( # Chain a .success() event to run *after* the .click() handler completes without error
# Clear the user input textbox after the message is sent and processed
lambda: gr.Textbox.update(value=""), # Use specific component update
inputs=None,
outputs=[user_input] # Use lists for outputs
)
# --- Initial Load Event Chain ---
# This chain runs once when the app loads
ai_builder_tab.load(
# Action 1: Show profile (loads cached login if available)
# Lambda receives args corresponding to load's inputs. Load has no explicit inputs here.
# However, Gradio *does* pass the initial values of all components/states defined *before* the load event.
# The most robust way is to pass the specific state needed.
lambda initial_profile: show_profile(initial_profile),
inputs=[hf_profile], # Pass the initial profile state value
outputs=[login_status] # Updates UI. Use lists for outputs. This output becomes prev_output for the next .then()
).then(
# Action 2: Configure Gemini using initial state
# Lambda receives (prev_output, api_key_val, model_name_val)
# prev_output is the string from show_profile. Use explicit inputs.
lambda prev_output, api_key_val_from_state, model_name_val_from_state: configure_gemini(api_key_val_from_state, model_name_val_from_state),
inputs=[gemini_api_key_state, gemini_model_state], # Explicitly pass the required states
outputs=[gemini_status] # Update Gemini status display. Use lists for outputs.
).then(
# Action 3: After initial load checks, update the button state based on initial states
# Lambda receives (prev_output, *prereq_state_values)
# prev_output is the string from configure_gemini. Use explicit inputs.
lambda prev_output, p1, p2, p3, p4, p5: check_send_button_ready(p1, p2, p3, p4, p5), # Match check_send_button_ready signature
inputs=prerequisite_states_for_button, # Pass all 5 prerequisite states
outputs=[send_btn], # Update the send button. Use lists for outputs.
).then(
# Action 4: Update the model description text based on the default selected model
# Lambda receives (prev_output, model_name_val)
# prev_output is the gr.Button.update object. Use explicit input.
lambda prev_output, model_name_val_from_state: get_model_description(model_name_val_from_state),
inputs=[gemini_model_state], # Get the default model name from state
outputs=[model_description_text] # Update description UI. Use lists for outputs.
).then(
# Action 5: Add the initial welcome message to the chat history
# Lambda receives (prev_output)
# prev_output is the description text.
lambda prev_output: greet(),
inputs=None, # Greet takes no explicit inputs
outputs=[chatbot] # Updates the chatbot display. Use lists for outputs.
)
# The main workflow function and other helper functions are correctly defined OUTSIDE the gr.Blocks context
# because they operate on the *values* passed to them by Gradio event triggers, not the UI component objects themselves.
if __name__ == "__main__":
# Optional: Configure Gradio settings using environment variables
os.environ["GRADIO_MAX_FILE_SIZE"] = "100MB"
os.environ["GRADIO_TEMP_DIR"] = "./tmp"
os.makedirs(os.environ["GRADIO_TEMP_DIR"], exist_ok=True)
logging.info("Starting Gradio app...")
# Launch the Gradio UI
ai_builder_tab.launch() |