r1-agents / app.py
wuhp's picture
Update app.py
ea0faa1 verified
raw
history blame
6.06 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import spaces # Import the spaces library
# Model IDs from Hugging Face Hub (same as before)
model_ids = {
"1.5B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"7B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
"14B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
}
# Function to load model and tokenizer (slightly adjusted device_map)
def load_model_and_tokenizer(model_id):
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, # Or torch.float16 if you prefer
device_map='auto', # Let accelerate decide (will use GPU when @spaces.GPU active)
trust_remote_code=True
)
return model, tokenizer
# Load all three models and tokenizers (loaded once at app startup - potentially on CPU initially)
models = {}
tokenizers = {}
for size, model_id in model_ids.items():
print(f"Loading {size} model: {model_id}")
models[size], tokenizers[size] = load_model_and_tokenizer(model_id)
print(f"Loaded {size} model.")
# --- Shared Memory Implementation --- (Same as before)
shared_memory = []
def store_in_memory(memory_item):
shared_memory.append(memory_item)
print(f"\n[Memory Stored]: {memory_item[:50]}...")
def retrieve_from_memory(query, top_k=2):
relevant_memories = []
query_lower = query.lower()
for memory_item in shared_memory:
if query_lower in memory_item.lower():
relevant_memories.append(memory_item)
if not relevant_memories:
print("\n[Memory Retrieval]: No relevant memories found.")
return []
print(f"\n[Memory Retrieval]: Found {len(relevant_memories)} relevant memories.")
return relevant_memories[:top_k]
# --- Swarm Agent Function with Shared Memory (RAG) - DECORATED with @spaces.GPU ---
@spaces.GPU # <---- GPU DECORATOR ADDED HERE!
def swarm_agent_sequential_rag(user_prompt):
global shared_memory
shared_memory = [] # Clear memory for each new request
print("\n--- Swarm Agent Processing with Shared Memory (RAG) - GPU ACCELERATED ---") # Updated message
# 1.5B Model - Brainstorming/Initial Draft
print("\n[1.5B Model - Brainstorming] - GPU Accelerated") # Added GPU indication
retrieved_memory_1_5b = retrieve_from_memory(user_prompt)
context_1_5b = "\n".join([f"- {mem}" for mem in retrieved_memory_1_5b]) if retrieved_memory_1_5b else "No relevant context found in memory."
prompt_1_5b = f"Context from Shared Memory:\n{context_1_5b}\n\nYou are a quick idea generator. Generate an initial response to the following user request, considering the context above:\n\nUser Request: {user_prompt}\n\nInitial Response:"
input_ids_1_5b = tokenizers["1.5B"].encode(prompt_1_5b, return_tensors="pt").to(models["1.5B"].device)
output_1_5b = models["1.5B"].generate(input_ids_1_5b, max_new_tokens=200, temperature=0.7, do_sample=True) # Reverted to original max_new_tokens (can adjust)
response_1_5b = tokenizers["1.5B"].decode(output_1_5b[0], skip_special_tokens=True)
print(f"1.5B Response:\n{response_1_5b}")
store_in_memory(f"1.5B Model Initial Response: {response_1_5b[:200]}...")
# 7B Model - Elaboration and Detail
print("\n[7B Model - Elaboration] - GPU Accelerated") # Added GPU indication
retrieved_memory_7b = retrieve_from_memory(response_1_5b)
context_7b = "\n".join([f"- {mem}" for mem in retrieved_memory_7b]) if retrieved_memory_7b else "No relevant context found in memory."
prompt_7b = f"Context from Shared Memory:\n{context_7b}\n\nYou are a detailed elaborator. Take the following initial response and elaborate on it, adding more detail and reasoning, considering the context above. \n\nInitial Response:\n{response_1_5b}\n\nElaborated Response:"
input_ids_7b = tokenizers["7B"].encode(prompt_7b, return_tensors="pt").to(models["7B"].device)
output_7b = models["7B"].generate(input_ids_7b, max_new_tokens=300, temperature=0.7, do_sample=True) # Reverted to original max_new_tokens
response_7b = tokenizers["7B"].decode(output_7b[0], skip_special_tokens=True)
print(f"7B Response:\n{response_7b}")
store_in_memory(f"7B Model Elaborated Response: {response_7b[:200]}...")
# 14B Model - Final Reasoning and Refinement
print("\n[14B Model - Final Refinement] - GPU Accelerated") # Added GPU indication
retrieved_memory_14b = retrieve_from_memory(response_7b)
context_14b = "\n".join([f"- {mem}" for mem in retrieved_memory_14b]) if retrieved_memory_14b else "No relevant context found in memory."
prompt_14b = f"Context from Shared Memory:\n{context_14b}\n\nYou are a high-level reasoner and refiner. Take the following elaborated response and refine it to be a final, well-reasoned, and polished answer, considering the context above. \n\nElaborated Response:\n{response_7b}\n\nFinal Answer:"
input_ids_14b = tokenizers["14B"].encode(prompt_14b, return_tensors="pt").to(models["14B"].device)
output_14b = models["14B"].generate(input_ids_14b, max_new_tokens=400, temperature=0.6, do_sample=True) # Reverted to original max_new_tokens
response_14b = tokenizers["14B"].decode(output_14b[0], skip_special_tokens=True)
print(f"14B Response (Final):\n{response_14b}")
return response_14b
# --- Gradio Interface --- (Same as before)
def gradio_interface(user_prompt):
return swarm_agent_sequential_rag(user_prompt)
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(lines=5, placeholder="Enter your task here..."),
outputs=gr.Textbox(lines=10, placeholder="Agent Swarm Output will appear here..."),
title="DeepSeek Agent Swarm (ZeroGPU Demo)",
description="Agent swarm using DeepSeek-R1-Distill models (1.5B, 7B, 14B) with shared memory. **GPU accelerated using ZeroGPU!** (Requires Pro Space)", # Updated description
)
if __name__ == "__main__":
iface.launch() # Only launch locally if running this script directly