|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
import spaces |
|
|
|
|
|
model_ids = { |
|
"1.5B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", |
|
"7B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", |
|
"14B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B" |
|
} |
|
|
|
|
|
def load_model_and_tokenizer(model_id): |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map='auto', |
|
trust_remote_code=True |
|
) |
|
return model, tokenizer |
|
|
|
|
|
models = {} |
|
tokenizers = {} |
|
for size, model_id in model_ids.items(): |
|
print(f"Loading {size} model: {model_id}") |
|
models[size], tokenizers[size] = load_model_and_tokenizer(model_id) |
|
print(f"Loaded {size} model.") |
|
|
|
|
|
shared_memory = [] |
|
|
|
def store_in_memory(memory_item): |
|
shared_memory.append(memory_item) |
|
print(f"\n[Memory Stored]: {memory_item[:50]}...") |
|
|
|
def retrieve_from_memory(query, top_k=2): |
|
relevant_memories = [] |
|
query_lower = query.lower() |
|
for memory_item in shared_memory: |
|
if query_lower in memory_item.lower(): |
|
relevant_memories.append(memory_item) |
|
|
|
if not relevant_memories: |
|
print("\n[Memory Retrieval]: No relevant memories found.") |
|
return [] |
|
|
|
print(f"\n[Memory Retrieval]: Found {len(relevant_memories)} relevant memories.") |
|
return relevant_memories[:top_k] |
|
|
|
|
|
|
|
@spaces.GPU |
|
def swarm_agent_sequential_rag(user_prompt): |
|
global shared_memory |
|
shared_memory = [] |
|
|
|
print("\n--- Swarm Agent Processing with Shared Memory (RAG) - GPU ACCELERATED ---") |
|
|
|
|
|
print("\n[1.5B Model - Brainstorming] - GPU Accelerated") |
|
retrieved_memory_1_5b = retrieve_from_memory(user_prompt) |
|
context_1_5b = "\n".join([f"- {mem}" for mem in retrieved_memory_1_5b]) if retrieved_memory_1_5b else "No relevant context found in memory." |
|
prompt_1_5b = f"Context from Shared Memory:\n{context_1_5b}\n\nYou are a quick idea generator. Generate an initial response to the following user request, considering the context above:\n\nUser Request: {user_prompt}\n\nInitial Response:" |
|
input_ids_1_5b = tokenizers["1.5B"].encode(prompt_1_5b, return_tensors="pt").to(models["1.5B"].device) |
|
output_1_5b = models["1.5B"].generate(input_ids_1_5b, max_new_tokens=200, temperature=0.7, do_sample=True) |
|
response_1_5b = tokenizers["1.5B"].decode(output_1_5b[0], skip_special_tokens=True) |
|
print(f"1.5B Response:\n{response_1_5b}") |
|
store_in_memory(f"1.5B Model Initial Response: {response_1_5b[:200]}...") |
|
|
|
|
|
print("\n[7B Model - Elaboration] - GPU Accelerated") |
|
retrieved_memory_7b = retrieve_from_memory(response_1_5b) |
|
context_7b = "\n".join([f"- {mem}" for mem in retrieved_memory_7b]) if retrieved_memory_7b else "No relevant context found in memory." |
|
prompt_7b = f"Context from Shared Memory:\n{context_7b}\n\nYou are a detailed elaborator. Take the following initial response and elaborate on it, adding more detail and reasoning, considering the context above. \n\nInitial Response:\n{response_1_5b}\n\nElaborated Response:" |
|
input_ids_7b = tokenizers["7B"].encode(prompt_7b, return_tensors="pt").to(models["7B"].device) |
|
output_7b = models["7B"].generate(input_ids_7b, max_new_tokens=300, temperature=0.7, do_sample=True) |
|
response_7b = tokenizers["7B"].decode(output_7b[0], skip_special_tokens=True) |
|
print(f"7B Response:\n{response_7b}") |
|
store_in_memory(f"7B Model Elaborated Response: {response_7b[:200]}...") |
|
|
|
|
|
print("\n[14B Model - Final Refinement] - GPU Accelerated") |
|
retrieved_memory_14b = retrieve_from_memory(response_7b) |
|
context_14b = "\n".join([f"- {mem}" for mem in retrieved_memory_14b]) if retrieved_memory_14b else "No relevant context found in memory." |
|
prompt_14b = f"Context from Shared Memory:\n{context_14b}\n\nYou are a high-level reasoner and refiner. Take the following elaborated response and refine it to be a final, well-reasoned, and polished answer, considering the context above. \n\nElaborated Response:\n{response_7b}\n\nFinal Answer:" |
|
input_ids_14b = tokenizers["14B"].encode(prompt_14b, return_tensors="pt").to(models["14B"].device) |
|
output_14b = models["14B"].generate(input_ids_14b, max_new_tokens=400, temperature=0.6, do_sample=True) |
|
response_14b = tokenizers["14B"].decode(output_14b[0], skip_special_tokens=True) |
|
print(f"14B Response (Final):\n{response_14b}") |
|
|
|
return response_14b |
|
|
|
|
|
|
|
def gradio_interface(user_prompt): |
|
return swarm_agent_sequential_rag(user_prompt) |
|
|
|
iface = gr.Interface( |
|
fn=gradio_interface, |
|
inputs=gr.Textbox(lines=5, placeholder="Enter your task here..."), |
|
outputs=gr.Textbox(lines=10, placeholder="Agent Swarm Output will appear here..."), |
|
title="DeepSeek Agent Swarm (ZeroGPU Demo)", |
|
description="Agent swarm using DeepSeek-R1-Distill models (1.5B, 7B, 14B) with shared memory. **GPU accelerated using ZeroGPU!** (Requires Pro Space)", |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |