File size: 18,551 Bytes
a707ccd 361c4d3 ea0faa1 361c4d3 b9d6d53 a707ccd ccc6355 a707ccd ccc6355 b9d6d53 6a12f54 ccc6355 6a12f54 b9d6d53 ccc6355 b9d6d53 ccc6355 6a12f54 b9d6d53 ccc6355 7714f74 b27451f 7714f74 ccc6355 7714f74 ccc6355 7714f74 b27451f ccc6355 7714f74 ccc6355 7714f74 ccc6355 7714f74 ccc6355 7714f74 ccc6355 ea0faa1 b9d6d53 ea0faa1 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 361c4d3 ccc6355 361c4d3 5138a85 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 d858dc3 5138a85 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ea0faa1 ccc6355 b9d6d53 ea0faa1 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 5138a85 ccc6355 361c4d3 ccc6355 361c4d3 b9d6d53 ccc6355 361c4d3 ccc6355 361c4d3 ccc6355 361c4d3 ccc6355 361c4d3 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 b9d6d53 ccc6355 ea0faa1 b9d6d53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import gradio as gr
import os
import spaces # Import the spaces library
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
import torch
from threading import Thread
import logging
from typing import Tuple, List, Dict, Generator
# --- Logging Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Model & Quantization Settings ---
MODEL_ID = "unsloth/DeepSeek-R1-Distill-Qwen-7B-unsloth-bnb-4bit"
# Dictionaries to store the loaded model and tokenizer
models: Dict[str, AutoModelForCausalLM] = {}
tokenizers: Dict[str, AutoTokenizer] = {}
bnb_config_4bit = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16, # Or torch.float16 if needed
)
def get_model_and_tokenizer() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
"""
Lazy-load the model and tokenizer if not already loaded.
Returns:
Tuple[model, tokenizer]: The loaded model and tokenizer.
"""
if "7B" not in models:
logging.info(f"Loading 7B model: {MODEL_ID} on demand")
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
quantization_config=bnb_config_4bit,
torch_dtype=torch.bfloat16, # Or torch.float16 if needed
device_map='auto',
trust_remote_code=True,
)
model.eval() # Set the model to evaluation mode
models["7B"] = model
tokenizers["7B"] = tokenizer
logging.info("Loaded 7B model on demand.")
except Exception as e:
logging.error(f"Failed to load model and tokenizer: {e}")
raise e
return models["7B"], tokenizers["7B"]
# --- Default Prompt Templates ---
default_prompt_brainstorm = """**Brainstorming Task (Round 1)**
As a Senior Code Analyst, provide an initial analysis of the problem below.
**User Request:**
{user_prompt}
**Guidelines:**
1. Identify key challenges and constraints.
2. Suggest multiple potential approaches.
3. Outline any potential edge cases or critical considerations.
"""
default_prompt_code_generation = """**Advanced Reasoning & Code Generation (Round 2)**
Based on the initial analysis below:
**Initial Analysis:**
{brainstorm_response}
**User Request:**
{user_prompt}
**Task:**
1. Develop a detailed solution that includes production-ready code.
2. Explain the reasoning behind the chosen approach.
3. Incorporate advanced reasoning to handle edge cases.
4. Provide commented code that is clear and maintainable.
"""
default_prompt_synthesis = """**Synthesis & Final Refinement (Round 3)**
Review the detailed code generation and reasoning below, and produce a final, refined response that:
1. Synthesizes the brainstorming insights and advanced reasoning.
2. Provides a concise summary of the solution.
3. Highlights any potential improvements or considerations.
**Detailed Response:**
{code_response}
"""
# --- Memory Management ---
class MemoryManager:
"""Encapsulate shared memory for storing and retrieving conversation items."""
def __init__(self) -> None:
self.shared_memory: List[str] = []
def store(self, item: str) -> None:
"""
Store a memory item and log an excerpt.
Args:
item (str): The memory content to store.
"""
self.shared_memory.append(item)
logging.info(f"[Memory Stored]: {item[:50]}...")
def retrieve(self, query: str, top_k: int = 3) -> List[str]:
"""
Retrieve memory items that contain the query text (case-insensitive).
Args:
query (str): The text query to search for.
top_k (int): Maximum number of memory items to return.
Returns:
List[str]: A list of up to top_k memory items.
"""
query_lower = query.lower()
relevant = [item for item in self.shared_memory if query_lower in item.lower()]
if not relevant:
logging.info("[Memory Retrieval]: No relevant memories found.")
else:
logging.info(f"[Memory Retrieval]: Found {len(relevant)} relevant memories.")
return relevant[:top_k]
# Create a global memory manager instance for RAG purposes.
global_memory_manager = MemoryManager()
# --- Multi-Round Swarm Agent Function ---
@spaces.GPU(duration=180) # Adjust duration as needed
def swarm_agent_iterative(user_prompt: str, temp: float, top_p: float, max_new_tokens: int, memory_top_k: int,
prompt_brainstorm_text: str, prompt_code_generation_text: str, prompt_synthesis_text: str
) -> Generator[str, None, None]:
"""
A three-round iterative process that uses the provided prompt templates:
- Round 1: Brainstorming.
- Round 2: Advanced reasoning & code generation.
- Round 3: Synthesis & refinement.
This generator yields the response from the final round as it is produced.
Yields:
str: Progressive updates of the final response.
"""
model, tokenizer = get_model_and_tokenizer()
# ----- Round 1: Brainstorming -----
logging.info("--- Round 1: Brainstorming ---")
prompt_r1 = prompt_brainstorm_text.format(user_prompt=user_prompt)
input_ids_r1 = tokenizer.encode(prompt_r1, return_tensors="pt").to(model.device)
streamer_r1 = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
kwargs_r1 = dict(
input_ids=input_ids_r1,
streamer=streamer_r1,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temp,
top_p=top_p,
)
try:
thread_r1 = Thread(target=model.generate, kwargs=kwargs_r1)
with torch.no_grad():
thread_r1.start()
except Exception as e:
logging.error(f"Error starting Round 1 thread: {e}")
raise e
brainstorm_response = ""
try:
for text in streamer_r1:
logging.info(text)
brainstorm_response += text
except Exception as e:
logging.error(f"Error during Round 1 generation: {e}")
raise e
thread_r1.join()
global_memory_manager.store(f"Brainstorm Response: {brainstorm_response[:200]}...")
# ----- Round 2: Code Generation -----
logging.info("--- Round 2: Code Generation ---")
prompt_r2 = prompt_code_generation_text.format(
brainstorm_response=brainstorm_response,
user_prompt=user_prompt
)
input_ids_r2 = tokenizer.encode(prompt_r2, return_tensors="pt").to(model.device)
streamer_r2 = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
kwargs_r2 = dict(
input_ids=input_ids_r2,
streamer=streamer_r2,
max_new_tokens=max_new_tokens + 100, # extra tokens for detail
temperature=temp,
top_p=top_p,
)
try:
thread_r2 = Thread(target=model.generate, kwargs=kwargs_r2)
with torch.no_grad():
thread_r2.start()
except Exception as e:
logging.error(f"Error starting Round 2 thread: {e}")
raise e
code_response = ""
try:
for text in streamer_r2:
logging.info(text)
code_response += text
except Exception as e:
logging.error(f"Error during Round 2 generation: {e}")
raise e
thread_r2.join()
global_memory_manager.store(f"Code Generation Response: {code_response[:200]}...")
# ----- Round 3: Synthesis & Refinement -----
logging.info("--- Round 3: Synthesis & Refinement ---")
prompt_r3 = prompt_synthesis_text.format(code_response=code_response)
input_ids_r3 = tokenizer.encode(prompt_r3, return_tensors="pt").to(model.device)
streamer_r3 = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
kwargs_r3 = dict(
input_ids=input_ids_r3,
streamer=streamer_r3,
max_new_tokens=max_new_tokens // 2,
temperature=temp,
top_p=top_p,
)
try:
thread_r3 = Thread(target=model.generate, kwargs=kwargs_r3)
with torch.no_grad():
thread_r3.start()
except Exception as e:
logging.error(f"Error starting Round 3 thread: {e}")
raise e
final_response = ""
try:
for text in streamer_r3:
logging.info(text)
final_response += text
yield final_response # Yield progressive updates
except Exception as e:
logging.error(f"Error during Round 3 generation: {e}")
raise e
thread_r3.join()
global_memory_manager.store(f"Final Synthesis Response: {final_response[:200]}...")
# --- Explanation Function for Puns ---
def handle_explanation_request(user_prompt: str) -> str:
"""
If the user asks for an explanation of the puns, this function retrieves
relevant stored memory items (which are expected to include pun examples) and
constructs a new prompt to generate a detailed explanation.
Args:
user_prompt (str): The user request (e.g. "explain the different puns you mentioned")
Returns:
str: The explanation generated by the model.
"""
# Retrieve memory items that contain "pun" (assuming previous outputs include puns)
retrieved = global_memory_manager.retrieve("pun", top_k=3)
if not retrieved:
explanation_prompt = "No previous puns found to explain. Please provide the pun examples."
else:
explanation_prompt = "Please explain the following coding puns in detail:\n\n"
for item in retrieved:
explanation_prompt += f"- {item}\n"
explanation_prompt += "\nProvide a detailed explanation for each pun."
model, tokenizer = get_model_and_tokenizer()
input_ids = tokenizer.encode(explanation_prompt, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=300,
temperature=0.7,
top_p=0.9,
)
try:
thread = Thread(target=model.generate, kwargs=kwargs)
with torch.no_grad():
thread.start()
except Exception as e:
logging.error(f"Error starting explanation thread: {e}")
raise e
explanation = ""
try:
for text in streamer:
explanation += text
except Exception as e:
logging.error(f"Error during explanation generation: {e}")
raise e
thread.join()
return explanation
# --- Helper to Format History ---
def format_history(history: List) -> List[Dict[str, str]]:
"""
Convert history (which might be a list of [user, assistant] pairs or already formatted dictionaries)
into a list of OpenAI-style message dictionaries.
Args:
history (List): List of conversation items.
Returns:
List[Dict[str, str]]: A list of formatted message dictionaries.
"""
messages = []
for item in history:
# If item is a list or tuple, try to unpack it if it has exactly 2 elements.
if isinstance(item, (list, tuple)) and len(item) == 2:
user_msg, assistant_msg = item
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
elif isinstance(item, dict):
messages.append(item)
return messages
# --- Gradio Chat Interface Function ---
def gradio_interface(message: str, history: List, param_state: Dict, prompt_state: Dict) -> Generator[List[Dict[str, str]], None, None]:
"""
This function is called by Gradio's ChatInterface.
It uses the current saved generation parameters and prompt templates.
If the user request appears to ask for an explanation of puns,
it routes the request to the explanation function.
Args:
message (str): The user message.
history (List): The conversation history.
param_state (Dict): Generation parameters.
prompt_state (Dict): Prompt templates.
Yields:
Generator[List[Dict[str, str]]]: Updated history in OpenAI-style message dictionaries.
"""
# Check if the user is asking to explain puns.
if "explain" in message.lower() and "pun" in message.lower():
explanation = handle_explanation_request(message)
history = history + [[message, explanation]]
yield format_history(history)
return
try:
temp = float(param_state.get("temperature", 0.5))
top_p = float(param_state.get("top_p", 0.9))
max_new_tokens = int(param_state.get("max_new_tokens", 300))
memory_top_k = int(param_state.get("memory_top_k", 2))
except Exception as e:
logging.error(f"Parameter conversion error: {e}")
temp, top_p, max_new_tokens, memory_top_k = 0.5, 0.9, 300, 2
prompt_brainstorm_text = prompt_state.get("prompt_brainstorm", default_prompt_brainstorm)
prompt_code_generation_text = prompt_state.get("prompt_code_generation", default_prompt_code_generation)
prompt_synthesis_text = prompt_state.get("prompt_synthesis", default_prompt_synthesis)
# Append the new user message with an empty assistant reply (as a two-item list)
history = history + [[message, ""]]
# Call the multi-round agent as a generator (for streaming)
for partial_response in swarm_agent_iterative(
user_prompt=message,
temp=temp,
top_p=top_p,
max_new_tokens=max_new_tokens,
memory_top_k=memory_top_k,
prompt_brainstorm_text=prompt_brainstorm_text,
prompt_code_generation_text=prompt_code_generation_text,
prompt_synthesis_text=prompt_synthesis_text
):
# Update the last assistant message with the new partial response.
history[-1][1] = partial_response
yield format_history(history)
# --- UI Settings & Styling ---
ui_description = '''
<div>
<h1 style="text-align: center;">DeepSeek Agent Swarm Chat</h1>
<p style="text-align: center;">
Multi-round agent:
<br>- Brainstorming
<br>- Advanced reasoning & code generation
<br>- Synthesis & refinement
</p>
</div>
'''
ui_license = """
<p/>
---
"""
ui_placeholder = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">DeepSeek Agent Swarm</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# --- Gradio UI ---
with gr.Blocks(css=css, title="DeepSeek Agent Swarm Chat") as demo:
gr.Markdown(ui_description)
# Hidden States to hold parameters and prompt configuration
param_state = gr.State({
"temperature": 0.5,
"top_p": 0.9,
"max_new_tokens": 300,
"memory_top_k": 2,
})
prompt_state = gr.State({
"prompt_brainstorm": default_prompt_brainstorm,
"prompt_code_generation": default_prompt_code_generation,
"prompt_synthesis": default_prompt_synthesis,
})
# Create top-level Tabs
with gr.Tabs():
# --- Chat Tab ---
with gr.Tab("Chat"):
chatbot = gr.Chatbot(height=450, placeholder=ui_placeholder, label="Agent Swarm Output", type="messages")
gr.ChatInterface(
fn=gradio_interface,
chatbot=chatbot,
additional_inputs=[param_state, prompt_state],
examples=[
['How can we build a robust web service that scales efficiently under load?'],
['Explain how to design a fault-tolerant distributed system.'],
['Develop a streamlit app that visualizes real-time financial data.'],
['Create a pun-filled birthday message with a coding twist.'],
['Design a system that uses machine learning to optimize resource allocation.']
],
cache_examples=False,
type="messages",
)
# --- Parameters Tab ---
with gr.Tab("Parameters"):
gr.Markdown("### Generation Parameters")
temp_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature")
top_p_slider = gr.Slider(minimum=0.01, maximum=1.0, step=0.05, value=0.9, label="Top P")
max_tokens_num = gr.Number(value=300, label="Max new tokens", precision=0)
memory_topk_slider = gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Memory Retrieval Top K")
save_params_btn = gr.Button("Save Parameters")
save_params_btn.click(
lambda t, p, m, k: {"temperature": t, "top_p": p, "max_new_tokens": m, "memory_top_k": k},
inputs=[temp_slider, top_p_slider, max_tokens_num, memory_topk_slider],
outputs=param_state,
)
# --- Prompt Config Tab ---
with gr.Tab("Prompt Config"):
gr.Markdown("### Configure Prompt Templates")
prompt_brainstorm_box = gr.Textbox(
value=default_prompt_brainstorm,
label="Brainstorm Prompt",
lines=8,
)
prompt_code_generation_box = gr.Textbox(
value=default_prompt_code_generation,
label="Code Generation Prompt",
lines=8,
)
prompt_synthesis_box = gr.Textbox(
value=default_prompt_synthesis,
label="Synthesis Prompt",
lines=8,
)
save_prompts_btn = gr.Button("Save Prompts")
save_prompts_btn.click(
lambda b, c, s: {
"prompt_brainstorm": b,
"prompt_code_generation": c,
"prompt_synthesis": s,
},
inputs=[prompt_brainstorm_box, prompt_code_generation_box, prompt_synthesis_box],
outputs=prompt_state,
)
gr.Markdown(ui_license)
if __name__ == "__main__":
demo.launch() |