wuhp commited on
Commit
6d30b44
·
verified ·
1 Parent(s): 066a25e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -27
app.py CHANGED
@@ -424,41 +424,32 @@ def chat_rag(
424
  return history, history
425
 
426
 
 
427
  with gr.Blocks() as demo:
428
  gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
429
  gr.Markdown("---")
430
 
431
- with gr.TabbedInterface(
432
  [
433
  gr.Interface(
434
  fn=finetune_small_subset,
435
  inputs=None,
436
  outputs=gr.Textbox(label="Fine-tuning Status", interactive=False),
437
  title="⚙️ Fine-tuning (Optional)",
438
- description="""
439
- ### Optional Fine-tuning
440
- This section allows you to fine-tune the custom R1 model on a small subset of the ServiceNow dataset.
441
- This step is **optional** but can potentially improve the model's performance on ServiceNow-related tasks.
442
-
443
- **Note:** This process may take up to 5 minutes. Click the button below to start fine-tuning.
444
- """
445
  ),
446
  gr.Interface(
447
  fn=predict,
448
  inputs=[
449
  gr.Textbox(lines=3, label="Input Prompt", placeholder="Enter your prompt here..."),
450
- gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature (Creativity)", info="Adjust the randomness of the output. Higher values mean more creative but potentially less coherent text."),
451
- gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p (Sampling Nucleus)", info="Controls the sampling pool. Lower values make the output more focused."),
452
- gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens", info="Minimum number of tokens to generate."),
453
- gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens", info="Maximum number of tokens to generate.")
454
  ],
455
  outputs=gr.Textbox(label="Custom R1 Output", lines=8, interactive=False),
456
  title="✍️ Direct Generation",
457
- description="""
458
- ### Direct Text Generation
459
- Enter a prompt to generate text directly using the custom R1 model.
460
- This is standard text generation without retrieval augmentation.
461
- """
462
  ),
463
  gr.Interface(
464
  fn=compare_models,
@@ -474,22 +465,14 @@ with gr.Blocks() as demo:
474
  gr.Textbox(label="Official R1 Output", lines=6, interactive=False)
475
  ],
476
  title="🆚 Model Comparison",
477
- description="""
478
- ### Model Output Comparison
479
- Enter a prompt to compare the text generation of your fine-tuned custom R1 model with the official DeepSeek-R1-Distill-Llama-8B model.
480
- This allows you to see the differences in output between the two models.
481
- """
482
  ),
483
  gr.ChatInterface(
484
  fn=chat_rag,
485
  chatbot=gr.Chatbot(label="RAG Chatbot"),
486
  textbox=gr.Textbox(placeholder="Ask a question to the RAG Chatbot...", lines=2, show_label=False),
487
  title="💬 RAG Chat",
488
- description="""
489
- ### RAG-Enhanced Chat with Custom R1
490
- Chat with the custom R1 model, enhanced with retrieval-augmented generation (RAG).
491
- The model retrieves relevant information to provide more informed and context-aware responses.
492
- """
493
  )
494
  ]
495
  )
 
424
  return history, history
425
 
426
 
427
+ # Build the Gradio interface with tabs.
428
  with gr.Blocks() as demo:
429
  gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
430
  gr.Markdown("---")
431
 
432
+ gr.TabbedInterface(
433
  [
434
  gr.Interface(
435
  fn=finetune_small_subset,
436
  inputs=None,
437
  outputs=gr.Textbox(label="Fine-tuning Status", interactive=False),
438
  title="⚙️ Fine-tuning (Optional)",
439
+ description="This section allows you to fine-tune the custom R1 model on a small subset of the ServiceNow dataset. This step is optional but can potentially improve the model's performance on ServiceNow-related tasks. **Note:** This process may take up to 5 minutes."
 
 
 
 
 
 
440
  ),
441
  gr.Interface(
442
  fn=predict,
443
  inputs=[
444
  gr.Textbox(lines=3, label="Input Prompt", placeholder="Enter your prompt here..."),
445
+ gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature (Creativity)"),
446
+ gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p (Sampling Nucleus)"),
447
+ gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens"),
448
+ gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens")
449
  ],
450
  outputs=gr.Textbox(label="Custom R1 Output", lines=8, interactive=False),
451
  title="✍️ Direct Generation",
452
+ description="Enter a prompt to generate text directly using the custom R1 model. This is standard text generation without retrieval augmentation."
 
 
 
 
453
  ),
454
  gr.Interface(
455
  fn=compare_models,
 
465
  gr.Textbox(label="Official R1 Output", lines=6, interactive=False)
466
  ],
467
  title="🆚 Model Comparison",
468
+ description="Enter a prompt to compare the text generation of your fine-tuned custom R1 model with the official DeepSeek-R1-Distill-Llama-8B model."
 
 
 
 
469
  ),
470
  gr.ChatInterface(
471
  fn=chat_rag,
472
  chatbot=gr.Chatbot(label="RAG Chatbot"),
473
  textbox=gr.Textbox(placeholder="Ask a question to the RAG Chatbot...", lines=2, show_label=False),
474
  title="💬 RAG Chat",
475
+ description="Chat with the custom R1 model, enhanced with retrieval-augmented memory. The model retrieves relevant info for informed responses."
 
 
 
 
476
  )
477
  ]
478
  )