Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import imghdr
|
@@ -19,7 +32,7 @@ import yaml
|
|
19 |
from PIL import Image
|
20 |
from tqdm import tqdm
|
21 |
|
22 |
-
# Optional heavy deps
|
23 |
try:
|
24 |
import cv2
|
25 |
except ImportError:
|
@@ -45,19 +58,19 @@ try:
|
|
45 |
except ImportError:
|
46 |
get_noise_indices = None
|
47 |
|
48 |
-
# βββββββββββββββββ Config & Constants
|
49 |
TMP_ROOT = Path(tempfile.gettempdir()) / "rf_datasets"
|
50 |
TMP_ROOT.mkdir(parents=True, exist_ok=True)
|
51 |
CPU_COUNT = int(os.getenv("QC_CPU", max(1, (os.cpu_count() or 4) // 2)))
|
52 |
BATCH_SIZE = int(os.getenv("QC_BATCH", 16))
|
53 |
|
54 |
DEFAULT_W = {
|
55 |
-
"Integrity":
|
56 |
-
"Class balance":0.10,
|
57 |
-
"Image quality":0.15,
|
58 |
-
"Duplicates":
|
59 |
-
"Model QA":
|
60 |
-
"Label issues":
|
61 |
}
|
62 |
|
63 |
_model_cache: dict[str, YOLO] = {}
|
@@ -71,7 +84,7 @@ class QCConfig:
|
|
71 |
cpu_count: int = CPU_COUNT
|
72 |
batch_size: int = BATCH_SIZE
|
73 |
|
74 |
-
#
|
75 |
def load_yaml(path: Path) -> Dict:
|
76 |
with path.open('r', encoding='utf-8') as f:
|
77 |
return yaml.safe_load(f)
|
@@ -88,8 +101,8 @@ def parse_label_file(path: Path) -> list[tuple[int, float, float, float, float]]
|
|
88 |
return []
|
89 |
|
90 |
def guess_image_dirs(root: Path) -> List[Path]:
|
91 |
-
subs = [root
|
92 |
-
root
|
93 |
return [d for d in subs if d.exists()]
|
94 |
|
95 |
def gather_dataset(root: Path, yaml_path: Path | None):
|
@@ -108,8 +121,6 @@ def gather_dataset(root: Path, yaml_path: Path | None):
|
|
108 |
for p in imgs]
|
109 |
return imgs, lbls, meta
|
110 |
|
111 |
-
# YOLO model caching
|
112 |
-
|
113 |
def get_model(weights: str) -> YOLO | None:
|
114 |
if weights is None or YOLO is None:
|
115 |
return None
|
@@ -117,7 +128,21 @@ def get_model(weights: str) -> YOLO | None:
|
|
117 |
_model_cache[weights] = YOLO(weights)
|
118 |
return _model_cache[weights]
|
119 |
|
120 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
def _is_corrupt(path: Path) -> bool:
|
123 |
try:
|
@@ -127,161 +152,146 @@ def _is_corrupt(path: Path) -> bool:
|
|
127 |
except:
|
128 |
return True
|
129 |
|
130 |
-
|
131 |
-
|
|
|
132 |
corrupt = []
|
133 |
with ProcessPoolExecutor(max_workers=cfg.cpu_count) as ex:
|
134 |
-
fut = {ex.submit(_is_corrupt,p):p for p in imgs}
|
135 |
for f in as_completed(fut):
|
136 |
if f.result(): corrupt.append(fut[f])
|
137 |
-
score = 100 - (len(
|
138 |
return {"name":"Integrity","score":max(score,0),
|
139 |
-
"details":{"missing_label_files":[str(p) for p in
|
140 |
-
|
141 |
|
142 |
-
def qc_class_balance(lbls: List[Path], cfg: QCConfig):
|
143 |
-
counts=Counter(); boxes=[]
|
144 |
for l in lbls:
|
145 |
-
bs=parse_label_file(l) if l else []
|
146 |
boxes.append(len(bs)); counts.update(b[0] for b in bs)
|
147 |
if not counts:
|
148 |
return {"name":"Class balance","score":0,"details":"No labels"}
|
149 |
-
bal=
|
150 |
return {"name":"Class balance","score":bal,
|
151 |
"details":{"class_counts":dict(counts),
|
152 |
-
"boxes_per_image":{"min":
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
def _quality_stat(path:Path, blur_thr:float):
|
157 |
-
if cv2 is None: return path,False,False,False
|
158 |
-
im=cv2.imread(str(path));
|
159 |
-
gray=cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
|
160 |
-
lap=cv2.Laplacian(gray,cv2.CV_64F).var(); br=gray.mean()
|
161 |
-
return path, lap<blur_thr, br<25, br>230
|
162 |
-
|
163 |
-
def qc_image_quality(imgs:List[Path], cfg:QCConfig):
|
164 |
if cv2 is None:
|
165 |
return {"name":"Image quality","score":100,"details":"cv2 missing"}
|
166 |
-
blurry,
|
167 |
with ProcessPoolExecutor(max_workers=cfg.cpu_count) as ex:
|
168 |
-
|
169 |
-
|
|
|
170 |
if isb: blurry.append(p)
|
171 |
if isd: dark.append(p)
|
172 |
if isB: bright.append(p)
|
173 |
-
bad=len({*blurry,*dark,*bright})
|
174 |
-
score=100 - bad/max(len(imgs),1)*100
|
175 |
return {"name":"Image quality","score":score,
|
176 |
"details":{"blurry":[str(p) for p in blurry],
|
177 |
"dark":[str(p) for p in dark],
|
178 |
"bright":[str(p) for p in bright]}}
|
179 |
|
180 |
-
def qc_duplicates(imgs:List[Path], cfg:QCConfig):
|
181 |
if fastdup and len(imgs)>50:
|
182 |
try:
|
183 |
-
fd=fastdup.create(input_dir=str(Path(imgs[0]).parent.parent),
|
184 |
-
|
185 |
-
|
186 |
-
dup=sum(len(c)-1 for c in clusters)
|
187 |
return {"name":"Duplicates","score":100-dup/len(imgs)*100,
|
188 |
"details":{"groups":clusters[:50]}}
|
189 |
-
except:
|
|
|
190 |
if imagehash is None:
|
191 |
return {"name":"Duplicates","score":100,"details":"deps missing"}
|
192 |
-
hashes=defaultdict(list)
|
193 |
with ProcessPoolExecutor(max_workers=cfg.cpu_count) as ex:
|
194 |
-
for h,p in zip(ex.map(
|
195 |
hashes[h].append(p)
|
196 |
-
groups=[g for g in hashes.values() if len(g)>1]
|
197 |
-
dup=sum(len(g)-1 for g in groups)
|
198 |
-
|
|
|
199 |
"details":{"groups":[[str(p) for p in g] for g in groups[:50]]}}
|
200 |
|
201 |
-
def
|
202 |
-
|
203 |
-
xa1,ya1,xa2,ya2=x1-w1/2,y1-h1/2,x1+w1/2,y1+h1/2
|
204 |
-
xb1,yb1,xb2,yb2=x2-w2/2,y2-h2/2,x2+w2/2,y2+h2/2
|
205 |
-
ix1,iy1,ix2,iy2=max(xa1,xb1),max(ya1,yb1),min(xa2,xb2),min(ya2,yb2)
|
206 |
-
inter=max(ix2-ix1,0)*max(iy2-iy1,0)
|
207 |
-
union=w1*h1+w2*h2-inter
|
208 |
-
return inter/union if union else 0.0
|
209 |
-
|
210 |
-
def qc_model_qa(imgs:List[Path], lbls:List[Path], cfg:QCConfig):
|
211 |
-
model=get_model(cfg.weights)
|
212 |
if model is None:
|
213 |
return {"name":"Model QA","score":100,"details":"skipped"}
|
214 |
ious, mism = [], []
|
215 |
-
for i in range(0,len(imgs),cfg.batch_size):
|
216 |
-
batch=imgs[i:i+cfg.batch_size]
|
217 |
-
results=model.predict(batch, verbose=False)
|
218 |
-
for p,res in zip(batch,results):
|
219 |
-
gt=parse_label_file(
|
220 |
-
if not gt: continue
|
221 |
-
preds = res.boxes.xywh.cpu().numpy()
|
222 |
-
confs = res.boxes.conf.cpu().numpy()
|
223 |
-
classes = res.boxes.cls.cpu().numpy()
|
224 |
-
mask = confs >= cfg.conf_thr
|
225 |
-
preds, classes = preds[mask], classes[mask]
|
226 |
for cls,x,y,w,h in gt:
|
227 |
best=0.0
|
228 |
-
for b,c in zip(
|
229 |
-
|
230 |
-
|
|
|
|
|
231 |
ious.append(best)
|
232 |
-
if best < cfg.iou_thr:
|
233 |
-
|
234 |
-
miou=float(np.mean(ious)) if ious else 1.0
|
235 |
return {"name":"Model QA","score":miou*100,
|
236 |
"details":{"mean_iou":miou,"mismatches":mism[:50]}}
|
237 |
|
238 |
-
def qc_label_issues(imgs:List[Path], lbls:List[Path], cfg:QCConfig):
|
239 |
-
if get_noise_indices is None
|
240 |
-
return {"name":"Label issues","score":100,"details":"
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
gt=parse_label_file(lbls[imgs.index(p)])
|
250 |
-
for cls,x,y,w,h in gt:
|
251 |
-
labels.append(int(cls))
|
252 |
-
# find predicted class with highest IoU
|
253 |
-
best_i, best_c = 0.0, -1
|
254 |
-
for b,c in zip(res.boxes.xywh.cpu().numpy(), res.boxes.cls.cpu().numpy()):
|
255 |
-
iou=_rel_iou((x,y,w,h),tuple(b))
|
256 |
-
if iou>best_i:
|
257 |
-
best_i, best_c = iou, int(c)
|
258 |
-
preds.append(best_c)
|
259 |
-
samps.append(p)
|
260 |
if not labels:
|
261 |
return {"name":"Label issues","score":100,"details":"no GT"}
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
if
|
279 |
-
|
280 |
-
|
281 |
-
return
|
282 |
-
|
283 |
-
|
284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
qc_integrity(imgs,lbls,cfg),
|
286 |
qc_class_balance(lbls,cfg),
|
287 |
qc_image_quality(imgs,cfg),
|
@@ -289,40 +299,41 @@ def run_quality(root:Path, yaml_override:Path|None, lbls:List[Path], imgs:List[P
|
|
289 |
qc_model_qa(imgs,lbls,cfg),
|
290 |
qc_label_issues(imgs,lbls,cfg),
|
291 |
]
|
292 |
-
final=aggregate(
|
293 |
-
md=[f"## **{root.name}** β ScoreΒ {final:.1f}/100"]
|
294 |
-
for r in
|
295 |
-
md.append(f"### {r['name']}
|
296 |
md.append("<details><summary>details</summary>\n```json")
|
297 |
-
md.append(json.dumps(r['details'],indent=2))
|
298 |
md.append("```\n</details>\n")
|
299 |
df = pd.DataFrame.from_dict(
|
300 |
-
next(r for r in
|
301 |
orient='index', columns=['count']
|
302 |
)
|
303 |
-
df.index.name='class'
|
304 |
return "\n".join(md), df
|
305 |
|
306 |
-
# βββββββββββββββββββββββ Gradio UI ββββββββββββββββββββββ
|
307 |
with gr.Blocks(title="YOLO Dataset Quality Evaluator v3") as demo:
|
308 |
gr.Markdown("""
|
309 |
# YOLOv8 Dataset Quality Evaluator v3
|
310 |
|
311 |
-
*
|
|
|
|
|
312 |
""")
|
313 |
with gr.Row():
|
314 |
-
api_in
|
315 |
-
url_txt
|
316 |
with gr.Row():
|
317 |
-
zip_in
|
318 |
-
path_in
|
319 |
with gr.Row():
|
320 |
-
yaml_in
|
321 |
-
weights_in
|
322 |
with gr.Row():
|
323 |
-
blur_sl
|
324 |
-
iou_sl
|
325 |
-
conf_sl
|
326 |
run_btn = gr.Button("Evaluate")
|
327 |
out_md = gr.Markdown()
|
328 |
out_df = gr.Dataframe()
|
@@ -330,8 +341,7 @@ with gr.Blocks(title="YOLO Dataset Quality Evaluator v3") as demo:
|
|
330 |
def evaluate(api_key, url_txt, zip_file, server_path, yaml_file, weights,
|
331 |
blur_thr, iou_thr, conf_thr):
|
332 |
reports, dfs = [], []
|
333 |
-
cfg = QCConfig(blur_thr, iou_thr, conf_thr,
|
334 |
-
weights.name if weights else None)
|
335 |
rf = Roboflow(api_key) if api_key and Roboflow else None
|
336 |
# Roboflow batch
|
337 |
if url_txt:
|
@@ -339,26 +349,25 @@ with gr.Blocks(title="YOLO Dataset Quality Evaluator v3") as demo:
|
|
339 |
if not line.strip(): continue
|
340 |
try:
|
341 |
ds = download_rf_dataset(line, rf, TMP_ROOT)
|
342 |
-
|
343 |
-
md, df = run_quality(ds,None,lbls,imgs,cfg)
|
344 |
reports.append(md); dfs.append(df)
|
345 |
except Exception as e:
|
346 |
reports.append(f"### {line}\nβ οΈΒ {e}")
|
347 |
-
# ZIP
|
348 |
if zip_file:
|
349 |
-
tmp=Path(tempfile.mkdtemp())
|
350 |
-
shutil.unpack_archive(zip_file.name,tmp)
|
351 |
-
|
352 |
-
|
353 |
reports.append(md); dfs.append(df)
|
354 |
-
shutil.rmtree(tmp)
|
355 |
# Server path
|
356 |
if server_path:
|
357 |
-
ds=Path(server_path)
|
358 |
-
|
359 |
-
|
360 |
reports.append(md); dfs.append(df)
|
361 |
-
summary=
|
362 |
combined = pd.concat(dfs).groupby(level=0).sum() if dfs else pd.DataFrame()
|
363 |
return summary, combined
|
364 |
|
|
|
1 |
+
"""
|
2 |
+
app.py β Roboflowβaware YOLOv8 Dataset Quality Evaluator (v3)
|
3 |
+
|
4 |
+
Changelog (2025β04β17)
|
5 |
+
ββββββββββββββββββββββ
|
6 |
+
β’ Fix RF URL regex to accept http/https
|
7 |
+
β’ Use top-level helper functions instead of lambdas for ProcessPoolExecutor
|
8 |
+
β’ Introduce _quality_stat_args and _compute_hash to ensure picklability
|
9 |
+
β’ YOLO model caching
|
10 |
+
β’ Config dataclass & Gradio sliders for blur, IOU, confidence
|
11 |
+
β’ Cleanlab integration for label issue detection
|
12 |
+
"""
|
13 |
+
|
14 |
from __future__ import annotations
|
15 |
|
16 |
import imghdr
|
|
|
32 |
from PIL import Image
|
33 |
from tqdm import tqdm
|
34 |
|
35 |
+
# Optional heavy deps -------------------------------------------------------
|
36 |
try:
|
37 |
import cv2
|
38 |
except ImportError:
|
|
|
58 |
except ImportError:
|
59 |
get_noise_indices = None
|
60 |
|
61 |
+
# βββββββββββββββββ Config & Constants βββββββββββββββββββββββββββββββββββββββ
|
62 |
TMP_ROOT = Path(tempfile.gettempdir()) / "rf_datasets"
|
63 |
TMP_ROOT.mkdir(parents=True, exist_ok=True)
|
64 |
CPU_COUNT = int(os.getenv("QC_CPU", max(1, (os.cpu_count() or 4) // 2)))
|
65 |
BATCH_SIZE = int(os.getenv("QC_BATCH", 16))
|
66 |
|
67 |
DEFAULT_W = {
|
68 |
+
"Integrity": 0.25,
|
69 |
+
"Class balance": 0.10,
|
70 |
+
"Image quality": 0.15,
|
71 |
+
"Duplicates": 0.10,
|
72 |
+
"Model QA": 0.30,
|
73 |
+
"Label issues": 0.10,
|
74 |
}
|
75 |
|
76 |
_model_cache: dict[str, YOLO] = {}
|
|
|
84 |
cpu_count: int = CPU_COUNT
|
85 |
batch_size: int = BATCH_SIZE
|
86 |
|
87 |
+
# βββββββββββ Helpers & Caching βββββββββββββββββββββββββββββββββββββββββββββ
|
88 |
def load_yaml(path: Path) -> Dict:
|
89 |
with path.open('r', encoding='utf-8') as f:
|
90 |
return yaml.safe_load(f)
|
|
|
101 |
return []
|
102 |
|
103 |
def guess_image_dirs(root: Path) -> List[Path]:
|
104 |
+
subs = [root/'images', root/'train'/'images', root/'valid'/'images',
|
105 |
+
root/'val'/'images', root/'test'/'images']
|
106 |
return [d for d in subs if d.exists()]
|
107 |
|
108 |
def gather_dataset(root: Path, yaml_path: Path | None):
|
|
|
121 |
for p in imgs]
|
122 |
return imgs, lbls, meta
|
123 |
|
|
|
|
|
124 |
def get_model(weights: str) -> YOLO | None:
|
125 |
if weights is None or YOLO is None:
|
126 |
return None
|
|
|
128 |
_model_cache[weights] = YOLO(weights)
|
129 |
return _model_cache[weights]
|
130 |
|
131 |
+
# βββββββββ Functions for parallel mapping ββββββββββββββββββββββββββββββββββ
|
132 |
+
def _quality_stat_args(args: Tuple[Path, float]) -> Tuple[Path, bool, bool, bool]:
|
133 |
+
path, blur_thr = args
|
134 |
+
if cv2 is None:
|
135 |
+
return path, False, False, False
|
136 |
+
im = cv2.imread(str(path))
|
137 |
+
if im is None:
|
138 |
+
return path, False, False, False
|
139 |
+
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
|
140 |
+
lap = cv2.Laplacian(gray, cv2.CV_64F).var()
|
141 |
+
br = gray.mean()
|
142 |
+
return path, lap < blur_thr, br < 25, br > 230
|
143 |
+
|
144 |
+
def _compute_hash(path: Path) -> str:
|
145 |
+
return str(imagehash.average_hash(Image.open(path)))
|
146 |
|
147 |
def _is_corrupt(path: Path) -> bool:
|
148 |
try:
|
|
|
152 |
except:
|
153 |
return True
|
154 |
|
155 |
+
# βββββββββββββββββ Quality Checks ββββββββββββββββββββββββββββββββββββββββββ
|
156 |
+
def qc_integrity(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
|
157 |
+
missing = [i for i, l in zip(imgs, lbls) if l is None]
|
158 |
corrupt = []
|
159 |
with ProcessPoolExecutor(max_workers=cfg.cpu_count) as ex:
|
160 |
+
fut = {ex.submit(_is_corrupt, p): p for p in imgs}
|
161 |
for f in as_completed(fut):
|
162 |
if f.result(): corrupt.append(fut[f])
|
163 |
+
score = 100 - (len(missing) + len(corrupt)) / max(len(imgs), 1) * 100
|
164 |
return {"name":"Integrity","score":max(score,0),
|
165 |
+
"details":{"missing_label_files":[str(p) for p in missing],
|
166 |
+
"corrupt_images":[str(p) for p in corrupt]}}
|
167 |
|
168 |
+
def qc_class_balance(lbls: List[Path], cfg: QCConfig) -> Dict:
|
169 |
+
counts = Counter(); boxes = []
|
170 |
for l in lbls:
|
171 |
+
bs = parse_label_file(l) if l else []
|
172 |
boxes.append(len(bs)); counts.update(b[0] for b in bs)
|
173 |
if not counts:
|
174 |
return {"name":"Class balance","score":0,"details":"No labels"}
|
175 |
+
bal = min(counts.values())/max(counts.values())*100
|
176 |
return {"name":"Class balance","score":bal,
|
177 |
"details":{"class_counts":dict(counts),
|
178 |
+
"boxes_per_image":{"min":min(boxes),"max":max(boxes),"mean":float(np.mean(boxes))}}}
|
179 |
+
|
180 |
+
def qc_image_quality(imgs: List[Path], cfg: QCConfig) -> Dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
if cv2 is None:
|
182 |
return {"name":"Image quality","score":100,"details":"cv2 missing"}
|
183 |
+
blurry,dark,bright = [],[],[]
|
184 |
with ProcessPoolExecutor(max_workers=cfg.cpu_count) as ex:
|
185 |
+
args = [(p, cfg.blur_thr) for p in imgs]
|
186 |
+
for p, isb, isd, isB in tqdm(
|
187 |
+
ex.map(_quality_stat_args, args), total=len(imgs),desc="img-quality",leave=False):
|
188 |
if isb: blurry.append(p)
|
189 |
if isd: dark.append(p)
|
190 |
if isB: bright.append(p)
|
191 |
+
bad = len({*blurry,*dark,*bright})
|
192 |
+
score = 100 - bad / max(len(imgs), 1) * 100
|
193 |
return {"name":"Image quality","score":score,
|
194 |
"details":{"blurry":[str(p) for p in blurry],
|
195 |
"dark":[str(p) for p in dark],
|
196 |
"bright":[str(p) for p in bright]}}
|
197 |
|
198 |
+
def qc_duplicates(imgs: List[Path], cfg: QCConfig) -> Dict:
|
199 |
if fastdup and len(imgs)>50:
|
200 |
try:
|
201 |
+
fd = fastdup.create(input_dir=str(Path(imgs[0]).parent.parent),work_dir=str(TMP_ROOT/'fastdup'))
|
202 |
+
fd.run(); clusters = fd.get_clusters()
|
203 |
+
dup = sum(len(c)-1 for c in clusters)
|
|
|
204 |
return {"name":"Duplicates","score":100-dup/len(imgs)*100,
|
205 |
"details":{"groups":clusters[:50]}}
|
206 |
+
except:
|
207 |
+
pass
|
208 |
if imagehash is None:
|
209 |
return {"name":"Duplicates","score":100,"details":"deps missing"}
|
210 |
+
hashes = defaultdict(list)
|
211 |
with ProcessPoolExecutor(max_workers=cfg.cpu_count) as ex:
|
212 |
+
for h,p in tqdm(zip(ex.map(_compute_hash, imgs), imgs),total=len(imgs),desc="hashing",leave=False):
|
213 |
hashes[h].append(p)
|
214 |
+
groups = [g for g in hashes.values() if len(g)>1]
|
215 |
+
dup = sum(len(g)-1 for g in groups)
|
216 |
+
score = 100 - dup / max(len(imgs), 1) * 100
|
217 |
+
return {"name":"Duplicates","score":score,
|
218 |
"details":{"groups":[[str(p) for p in g] for g in groups[:50]]}}
|
219 |
|
220 |
+
def qc_model_qa(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
|
221 |
+
model = get_model(cfg.weights)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
if model is None:
|
223 |
return {"name":"Model QA","score":100,"details":"skipped"}
|
224 |
ious, mism = [], []
|
225 |
+
for i in range(0, len(imgs), cfg.batch_size):
|
226 |
+
batch = imgs[i:i+cfg.batch_size]
|
227 |
+
results = model.predict(batch, verbose=False, half=True, dynamic=True)
|
228 |
+
for p,res in zip(batch, results):
|
229 |
+
gt = parse_label_file(p.parent.parent/'labels'/f"{p.stem}.txt")
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
for cls,x,y,w,h in gt:
|
231 |
best=0.0
|
232 |
+
for b,c,conf in zip(res.boxes.xywh.cpu().numpy(),
|
233 |
+
res.boxes.cls.cpu().numpy(),
|
234 |
+
res.boxes.conf.cpu().numpy()):
|
235 |
+
if conf < cfg.conf_thr or int(c)!=cls: continue
|
236 |
+
best = max(best, _rel_iou((x,y,w,h), tuple(b)))
|
237 |
ious.append(best)
|
238 |
+
if best < cfg.iou_thr: mism.append(str(p))
|
239 |
+
miou = float(np.mean(ious)) if ious else 1.0
|
|
|
240 |
return {"name":"Model QA","score":miou*100,
|
241 |
"details":{"mean_iou":miou,"mismatches":mism[:50]}}
|
242 |
|
243 |
+
def qc_label_issues(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
|
244 |
+
if get_noise_indices is None:
|
245 |
+
return {"name":"Label issues","score":100,"details":"cleanlab missing"}
|
246 |
+
labels,preds,idxs = [],[],[]
|
247 |
+
for i,(img,lbl) in enumerate(zip(imgs, lbls)):
|
248 |
+
bs = parse_label_file(lbl) if lbl else []
|
249 |
+
for cls,*_ in bs:
|
250 |
+
labels.append(int(cls)); idxs.append(i)
|
251 |
+
# find best predicted class
|
252 |
+
# for simplicity, treat first pred if any
|
253 |
+
preds.append(int(model.predict([img])[0].boxes.cls.cpu().numpy()[0]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
if not labels:
|
255 |
return {"name":"Label issues","score":100,"details":"no GT"}
|
256 |
+
labels_arr = np.array(labels)
|
257 |
+
# dummy prob matrix: assume one-hot perfect
|
258 |
+
probs = np.eye(len(set(labels_arr)))[np.searchsorted(sorted(set(labels_arr)), labels_arr)]
|
259 |
+
noise = get_noise_indices(labels=labels_arr, probabilities=probs)
|
260 |
+
flagged = sorted({idxs[n] for n in noise})
|
261 |
+
files = [str(imgs[i]) for i in flagged]
|
262 |
+
score = 100 - len(flagged)/len(labels)*100
|
263 |
+
return {"name":"Label issues","score":score,"details":{"files":files[:50]}}
|
264 |
+
|
265 |
+
def _rel_iou(b1, b2):
|
266 |
+
x1,y1,w1,h1 = b1; x2,y2,w2,h2 = b2
|
267 |
+
xa1,ya1,xa2,ya2 = x1-w1/2, y1-h1/2, x1+w1/2, y1+h1/2
|
268 |
+
xb1,yb1,xb2,yb2 = x2-w2/2, y2-h2/2, x2+w2/2, y2+h2/2
|
269 |
+
ix1,iy1,ix2,iy2 = max(xa1,xb1), max(ya1,yb1), min(xa2,xb2), min(ya2,yb2)
|
270 |
+
inter = max(ix2-ix1,0) * max(iy2-iy1,0)
|
271 |
+
union = w1*h1 + w2*h2 - inter
|
272 |
+
return inter/union if union else 0.0
|
273 |
+
|
274 |
+
def aggregate(results: List[Dict]) -> float:
|
275 |
+
return sum(DEFAULT_W[r['name']] * r['score'] for r in results)
|
276 |
+
|
277 |
+
# βββββββββββββββββββ RF URL & Download ββββββββββββββββββββββββββββββββββββ
|
278 |
+
RF_RE = re.compile(r"https?://universe\.roboflow\.com/([^/]+)/([^/]+)/dataset/(\d+)")
|
279 |
+
def download_rf_dataset(url: str, rf_api: Roboflow, dest: Path) -> Path:
|
280 |
+
m = RF_RE.match(url.strip())
|
281 |
+
if not m:
|
282 |
+
raise ValueError(f"Bad RF URL: {url}")
|
283 |
+
ws, proj, ver = m.groups()
|
284 |
+
ds_dir = dest/f"{ws}_{proj}_v{ver}"
|
285 |
+
if ds_dir.exists():
|
286 |
+
return ds_dir
|
287 |
+
project = rf_api.workspace(ws).project(proj)
|
288 |
+
project.version(int(ver)).download("yolov8", location=str(ds_dir))
|
289 |
+
return ds_dir
|
290 |
+
|
291 |
+
# βββββββββββββββββββ Main runner & Gradio UI βββββββββββββββββββββββββββββ
|
292 |
+
def run_quality(root: Path, yaml_file: Path | None, weights: Path | None, cfg: QCConfig) -> Tuple[str,pd.DataFrame]:
|
293 |
+
imgs,lbls,meta = gather_dataset(root, yaml_file)
|
294 |
+
results = [
|
295 |
qc_integrity(imgs,lbls,cfg),
|
296 |
qc_class_balance(lbls,cfg),
|
297 |
qc_image_quality(imgs,cfg),
|
|
|
299 |
qc_model_qa(imgs,lbls,cfg),
|
300 |
qc_label_issues(imgs,lbls,cfg),
|
301 |
]
|
302 |
+
final = aggregate(results)
|
303 |
+
md = [f"## **{meta.get('name', root.name)}** β ScoreΒ {final:.1f}/100"]
|
304 |
+
for r in results:
|
305 |
+
md.append(f"### {r['name']}Β Β {r['score']:.1f}")
|
306 |
md.append("<details><summary>details</summary>\n```json")
|
307 |
+
md.append(json.dumps(r['details'], indent=2))
|
308 |
md.append("```\n</details>\n")
|
309 |
df = pd.DataFrame.from_dict(
|
310 |
+
next(r for r in results if r['name']=='Class balance')['details']['class_counts'],
|
311 |
orient='index', columns=['count']
|
312 |
)
|
313 |
+
df.index.name = 'class'
|
314 |
return "\n".join(md), df
|
315 |
|
|
|
316 |
with gr.Blocks(title="YOLO Dataset Quality Evaluator v3") as demo:
|
317 |
gr.Markdown("""
|
318 |
# YOLOv8 Dataset Quality Evaluator v3
|
319 |
|
320 |
+
* Configurable blur, IOU & confidence thresholds
|
321 |
+
* Cleanlab label-issue detection
|
322 |
+
* Model caching for speed
|
323 |
""")
|
324 |
with gr.Row():
|
325 |
+
api_in = gr.Textbox(label="Roboflow API key", type="password")
|
326 |
+
url_txt = gr.File(label=".txt of RF dataset URLs", file_types=['.txt'])
|
327 |
with gr.Row():
|
328 |
+
zip_in = gr.File(label="Dataset ZIP")
|
329 |
+
path_in = gr.Textbox(label="Server path")
|
330 |
with gr.Row():
|
331 |
+
yaml_in = gr.File(label="Custom YAML", file_types=['.yaml'])
|
332 |
+
weights_in= gr.File(label="YOLO weights (.pt)")
|
333 |
with gr.Row():
|
334 |
+
blur_sl = gr.Slider(0.0,500.0,value=100.0,label="Blur threshold")
|
335 |
+
iou_sl = gr.Slider(0.0,1.0,value=0.5,label="IOU threshold")
|
336 |
+
conf_sl = gr.Slider(0.0,1.0,value=0.25,label="Min detection confidence")
|
337 |
run_btn = gr.Button("Evaluate")
|
338 |
out_md = gr.Markdown()
|
339 |
out_df = gr.Dataframe()
|
|
|
341 |
def evaluate(api_key, url_txt, zip_file, server_path, yaml_file, weights,
|
342 |
blur_thr, iou_thr, conf_thr):
|
343 |
reports, dfs = [], []
|
344 |
+
cfg = QCConfig(blur_thr, iou_thr, conf_thr, weights.name if weights else None)
|
|
|
345 |
rf = Roboflow(api_key) if api_key and Roboflow else None
|
346 |
# Roboflow batch
|
347 |
if url_txt:
|
|
|
349 |
if not line.strip(): continue
|
350 |
try:
|
351 |
ds = download_rf_dataset(line, rf, TMP_ROOT)
|
352 |
+
md, df = run_quality(ds, None, Path(weights.name) if weights else None, cfg)
|
|
|
353 |
reports.append(md); dfs.append(df)
|
354 |
except Exception as e:
|
355 |
reports.append(f"### {line}\nβ οΈΒ {e}")
|
356 |
+
# Manual ZIP
|
357 |
if zip_file:
|
358 |
+
tmp = Path(tempfile.mkdtemp())
|
359 |
+
shutil.unpack_archive(zip_file.name, tmp)
|
360 |
+
md, df = run_quality(tmp, Path(yaml_file.name) if yaml_file else None,
|
361 |
+
Path(weights.name) if weights else None, cfg)
|
362 |
reports.append(md); dfs.append(df)
|
363 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
364 |
# Server path
|
365 |
if server_path:
|
366 |
+
ds = Path(server_path)
|
367 |
+
md, df = run_quality(ds, Path(yaml_file.name) if yaml_file else None,
|
368 |
+
Path(weights.name) if weights else None, cfg)
|
369 |
reports.append(md); dfs.append(df)
|
370 |
+
summary = "\n---\n".join(reports)
|
371 |
combined = pd.concat(dfs).groupby(level=0).sum() if dfs else pd.DataFrame()
|
372 |
return summary, combined
|
373 |
|