evaltest2 / app.py
wuhp's picture
Update app.py
c450ec7 verified
raw
history blame
20.3 kB
from __future__ import annotations
import base64
import imghdr
import io
import json
import logging
import os
import random
import re
import shutil
import stat
import tempfile
import zipfile
from collections import Counter
from concurrent.futures import ThreadPoolExecutor, as_completed
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Tuple
import gradio as gr
import numpy as np
import pandas as pd
import yaml
from PIL import Image
# Optional heavy deps -------------------------------------------------------
try:
import cv2
except ImportError:
cv2 = None
try:
import imagehash
except ImportError:
imagehash = None
try:
import fastdup
except ImportError:
fastdup = None
try:
from ultralytics import YOLO
except ImportError:
YOLO = None
try:
from roboflow import Roboflow
except ImportError:
Roboflow = None
try:
from cleanlab.pruning import get_noise_indices
except ImportError:
get_noise_indices = None
# ───────────────── Config & Constants ───────────────────────────────────────
TMP_ROOT = Path(tempfile.gettempdir()) / "rf_datasets"
TMP_ROOT.mkdir(parents=True, exist_ok=True)
CPU_COUNT = int(os.getenv("QC_CPU", 1))
BATCH_SIZE = int(os.getenv("QC_BATCH", 4))
SAMPLE_LIMIT = int(os.getenv("QC_SAMPLE", 200))
DEFAULT_W = {
"Integrity": 0.25,
"Class balance": 0.10,
"Image quality": 0.15,
"Duplicates": 0.10,
"Model QA": 0.30,
"Label issues": 0.10,
}
logging.basicConfig(level=logging.INFO, format="%(asctime)s | %(levelname)s | %(message)s")
_model_cache: dict[str, YOLO] = {}
autoinc = 0 # helper for tmp‑dir names
# ────────────────────────────────────────────────────────────────────────────
# Data‑class & helpers reused from the original evaluation script
# ────────────────────────────────────────────────────────────────────────────
@dataclass
class QCConfig:
blur_thr: float
iou_thr: float
conf_thr: float
weights: str | None
cpu_count: int = CPU_COUNT
batch_size: int = BATCH_SIZE
sample_limit:int = SAMPLE_LIMIT
def load_yaml(path: Path) -> Dict:
with path.open("r", encoding="utf-8") as f:
return yaml.safe_load(f)
def parse_label_file(path: Path) -> list[tuple[int, float, float, float, float]]:
if not path or not path.exists() or path.stat().st_size == 0:
return []
try:
arr = np.loadtxt(path, dtype=float)
if arr.ndim == 1:
arr = arr.reshape(1, -1)
return [tuple(row) for row in arr]
except Exception:
return []
def guess_image_dirs(root: Path) -> List[Path]:
candidates = [
root / "images",
root / "train" / "images",
root / "valid" / "images",
root / "val" / "images",
root / "test" / "images",
]
return [d for d in candidates if d.exists()]
def gather_dataset(root: Path, yaml_path: Path | None):
if yaml_path is None:
yamls = list(root.glob("*.yaml"))
if not yamls:
raise FileNotFoundError("Dataset YAML not found")
yaml_path = yamls[0]
meta = load_yaml(yaml_path)
img_dirs = guess_image_dirs(root)
if not img_dirs:
raise FileNotFoundError("images/ directory missing")
imgs = [p for d in img_dirs for p in d.rglob("*.*") if imghdr.what(p)]
labels_roots = {d.parent / "labels" for d in img_dirs}
lbls = [
next((lr / f"{p.stem}.txt" for lr in labels_roots if (lr / f"{p.stem}.txt").exists()), None)
for p in imgs
]
return imgs, lbls, meta
def get_model(weights: str) -> YOLO | None:
if not weights or YOLO is None:
return None
if weights not in _model_cache:
_model_cache[weights] = YOLO(weights)
return _model_cache[weights]
# ---------------------------------------------------------------------------
# QUALITY‑EVALUATION (UNCHANGED from v3)
# ---------------------------------------------------------------------------
# --‑‑ <Functions qc_integrity / qc_class_balance / qc_image_quality ...>
# **(unchanged – omitted here for brevity; same as your previous v3 script)**
# ---------------------------------------------------------------------------
# ════════════════════════════════════════════════════════════════════════════
# MERGE ✦ EDIT ✦ ZIP
# ════════════════════════════════════════════════════════════════════════════
# -------------------- Roboflow helpers --------------------
RF_RE = re.compile(r"https?://universe\.roboflow\.com/([^/]+)/([^/]+)/?([^/]*)")
def parse_roboflow_url(url: str) -> tuple[str, str, int | None]:
"""
Return (workspace, project, version|None) – tolerates many RF URL flavours.
Any non‐positive or malformed version is treated as None.
"""
m = RF_RE.match(url.strip())
if not m:
return None, None, None
ws, proj, tail = m.groups()
ver: int | None = None
# explicit "dataset/<number>" in path
if tail.startswith("dataset/"):
try:
v = int(tail.split("dataset/", 1)[1])
if v > 0:
ver = v
except ValueError:
pass
# explicit "?version=<number>" in query
if ver is None and "?version=" in url:
try:
v = int(url.split("?version=", 1)[1])
if v > 0:
ver = v
except ValueError:
pass
return ws, proj, ver
def get_latest_version(rf: Roboflow, ws: str, proj: str) -> str | None:
try:
p = rf.workspace(ws).project(proj)
versions = p.versions()
vnums = [int(getattr(v, "version_number", getattr(v, "number", 0))) for v in versions]
return str(max(vnums)) if vnums else None
except Exception as e:
logging.warning(f"RF latest‑version lookup failed: {e}")
return None
def download_roboflow_dataset(
url: str,
rf_api_key: str,
fmt: str = "yolov8",
) -> Tuple[Path, List[str], List[str]]:
"""Return (dataset_location, class_names, splits). Caches by folder name."""
if Roboflow is None:
raise RuntimeError("`roboflow` pip package not installed")
ws, proj, ver = parse_roboflow_url(url)
if not (ws and proj):
raise ValueError(f"Bad Roboflow URL: {url!r}")
rf = Roboflow(api_key=rf_api_key)
# if no explicit version or invalid, fetch latest
if not ver or ver <= 0:
latest = get_latest_version(rf, ws, proj)
if latest is None:
raise RuntimeError("Could not resolve latest Roboflow version")
try:
ver = int(latest)
except ValueError:
raise RuntimeError(f"Invalid latest version returned: {latest!r}")
ds_dir = TMP_ROOT / f"{ws}_{proj}_v{ver}"
if ds_dir.exists():
yaml_path = ds_dir / "data.yaml"
class_names = load_yaml(yaml_path).get("names", []) if yaml_path.exists() else []
splits = [s for s in ("train","valid","test") if (ds_dir / s).exists()]
return ds_dir, class_names, splits
ds_dir.mkdir(parents=True, exist_ok=True)
rf.workspace(ws).project(proj).version(ver).download(fmt, location=str(ds_dir))
yaml_path = ds_dir / "data.yaml"
class_names = load_yaml(yaml_path).get("names", []) if yaml_path.exists() else []
splits = [s for s in ("train","valid","test") if (ds_dir / s).exists()]
return ds_dir, class_names, splits
# -------------------- Merge helpers (adapted from Streamlit) --------------
def gather_class_counts(dataset_info_list, class_name_mapping):
counts = Counter()
for dloc, class_names, splits, _ in dataset_info_list:
for split in splits:
labels_dir = Path(dloc) / split / "labels"
if not labels_dir.exists():
continue
for lp in labels_dir.rglob("*.txt"):
for cls_id, *_ in parse_label_file(lp):
orig = class_names[int(cls_id)] if int(cls_id) < len(class_names) else None
if orig is None:
continue
merged = class_name_mapping.get(orig, orig)
counts[merged] += 1
return dict(counts)
def _process_label_file(label_path: Path, class_names_dataset, class_name_mapping):
im_name = label_path.stem + label_path.suffix.replace(".txt", ".jpg")
img_classes = set()
for cls_id, *_ in parse_label_file(label_path):
if 0 <= cls_id < len(class_names_dataset):
orig = class_names_dataset[int(cls_id)]
new = class_name_mapping.get(orig, orig)
img_classes.add(new)
return im_name, img_classes
def merge_datasets(
dataset_info_list: List[Tuple[str, List[str], List[str], str]],
class_map_df: pd.DataFrame,
out_dir: Path = Path("merged_dataset"),
seed: int = 1234,
) -> Path:
"""Return path to merged dataset ready for training/eval."""
random.seed(seed)
if out_dir.exists():
shutil.rmtree(out_dir, onerror=lambda f, p, _: (os.chmod(p, stat.S_IWRITE), f(p)))
(out_dir / "train/images").mkdir(parents=True, exist_ok=True)
(out_dir / "train/labels").mkdir(parents=True, exist_ok=True)
(out_dir / "valid/images").mkdir(parents=True, exist_ok=True)
(out_dir / "valid/labels").mkdir(parents=True, exist_ok=True)
class_name_mapping = {
row["original_class"]: row["new_name"] if not row["remove"] else "__REMOVED__"
for _, row in class_map_df.iterrows()
}
limits_per_merged = {
row["new_name"]: int(row["max_images"])
for _, row in class_map_df.iterrows()
if not row["remove"]
}
active_classes = [c for c in sorted(set(class_name_mapping.values())) if c != "__REMOVED__"]
id_map = {cls: idx for idx, cls in enumerate(active_classes)}
image_to_classes: dict[str, set[str]] = {}
image_to_label: dict[str, Path] = {}
class_to_images: dict[str, set[str]] = {c: set() for c in active_classes}
for dloc, class_names_dataset, splits, _ in dataset_info_list:
for split in splits:
labels_root = Path(dloc) / split / "labels"
if not labels_root.exists():
continue
for lp in labels_root.rglob("*.txt"):
im_name, cls_set = _process_label_file(lp, class_names_dataset, class_name_mapping)
cls_set = {c for c in cls_set if c in active_classes}
if not cls_set:
continue
img_path = str(lp).replace("labels", "images").replace(".txt", ".jpg")
image_to_classes[img_path] = cls_set
image_to_label[img_path] = lp
for c in cls_set:
class_to_images[c].add(img_path)
selected_images: set[str] = set()
counters = {c: 0 for c in active_classes}
shuffle_pool = [img for imgs in class_to_images.values() for img in imgs]
random.shuffle(shuffle_pool)
for img in shuffle_pool:
cls_set = image_to_classes[img]
if any(counters[c] >= limits_per_merged.get(c, 0) for c in cls_set):
continue
selected_images.add(img)
for c in cls_set:
counters[c] += 1
for img in selected_images:
split = "train" if random.random() < 0.9 else "valid"
dst_img = out_dir / split / "images" / Path(img).name
dst_img.parent.mkdir(parents=True, exist_ok=True)
shutil.copy(img, dst_img)
lp_src = image_to_label[img]
dst_label = out_dir / split / "labels" / Path(lp_src).name
dst_label.parent.mkdir(parents=True, exist_ok=True)
with open(lp_src, "r") as f:
lines = f.readlines()
new_lines = []
for line in lines:
parts = line.strip().split()
if not parts:
continue
cid = int(parts[0])
dloc_match = next((cl for dloc2, cl, _, _ in dataset_info_list if str(lp_src).startswith(dloc2)), None)
if dloc_match is None:
continue
orig_cls_name = dloc_match[cid] if cid < len(dloc_match) else None
if orig_cls_name is None:
continue
merged_cls_name = class_name_mapping.get(orig_cls_name, orig_cls_name)
if merged_cls_name not in active_classes:
continue
new_id = id_map[merged_cls_name]
new_lines.append(" ".join([str(new_id)] + parts[1:]))
if new_lines:
with open(dst_label, "w") as f:
f.write("\n".join(new_lines))
else:
(out_dir / split / "images" / Path(img).name).unlink(missing_ok=True)
data_yaml = {
"path": str(out_dir.resolve()),
"train": "train/images",
"val": "valid/images",
"nc": len(active_classes),
"names": active_classes,
}
with open(out_dir / "data.yaml", "w") as f:
yaml.safe_dump(data_yaml, f)
return out_dir
def zip_directory(folder: Path) -> bytes:
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w", zipfile.ZIP_DEFLATED) as zf:
for file in folder.rglob("*"):
zf.write(file, arcname=file.relative_to(folder))
buf.seek(0)
return buf.getvalue()
# ════════════════════════════════════════════════════════════════════════════
# UI LAYER
# ════════════════════════════════════════════════════════════════════════════
with gr.Blocks(css="#classdf td{min-width:120px}") as demo:
gr.Markdown("""
# 🏹 **YOLO Dataset Toolkit**
_Evaluate β€’ Merge β€’ Edit β€’ Download_
""")
# ------------------------------ EVALUATE TAB --------------------------
with gr.Tab("Evaluate"):
with gr.Row():
api_in = gr.Textbox(label="Roboflow API key", type="password")
url_txt = gr.File(label=".txt of RF dataset URLs", file_types=['.txt'])
with gr.Row():
zip_in = gr.File(label="Dataset ZIP")
path_in = gr.Textbox(label="Server path")
with gr.Row():
yaml_in = gr.File(label="Custom YAML", file_types=['.yaml'])
weights_in = gr.File(label="YOLO weights (.pt)")
blur_sl = gr.Slider(0.0, 500.0, value=100.0, label="Blur threshold")
iou_sl = gr.Slider(0.0, 1.0, value=0.5, label="IOU threshold")
conf_sl = gr.Slider(0.0, 1.0, value=0.25, label="Min detection confidence")
run_dup = gr.Checkbox(label="Check duplicates (fastdup)")
run_qa = gr.Checkbox(label="Run Model QA & cleanlab")
run_eval = gr.Button("Run Evaluation")
out_md = gr.Markdown()
out_df = gr.Dataframe(label="Class distribution")
def _evaluate_cb(api_key, url_txt, zip_file, server_path, yaml_file, weights,
blur_thr, iou_thr, conf_thr, run_dup, run_modelqa):
return "Evaluation disabled in this trimmed snippet.", pd.DataFrame()
run_eval.click(
_evaluate_cb,
[api_in, url_txt, zip_in, path_in, yaml_in, weights_in,
blur_sl, iou_sl, conf_sl, run_dup, run_qa],
[out_md, out_df]
)
# ------------------------------ MERGE TAB -----------------------------
with gr.Tab("Merge / Edit"):
gr.Markdown("### 1️⃣ Load one or more datasets")
rf_key = gr.Textbox(label="Roboflow API key", type="password")
rf_urls = gr.File(label=".txt of RF URLs", file_types=['.txt'])
zips_in = gr.Files(label="One or more dataset ZIPs")
load_btn = gr.Button("Load datasets")
load_log = gr.Markdown()
ds_state = gr.State([]) # List[(dloc, class_names, splits, name)]
def _load_cb(rf_key, rf_urls_file, zip_files):
global autoinc
info_list = []
log_lines = []
# Roboflow URLs via txt
if rf_urls_file is not None:
for url in Path(rf_urls_file.name).read_text().splitlines():
if not url.strip():
continue
try:
ds, names, splits = download_roboflow_dataset(url, rf_key)
info_list.append((str(ds), names, splits, Path(ds).name))
log_lines.append(f"βœ”οΈ RF dataset **{Path(ds).name}** loaded ({len(names)} classes)")
except Exception as e:
log_lines.append(f"⚠️ RF load failed for {url!r}: {e}")
# ZIPs
for f in zip_files or []:
autoinc += 1
tmp = TMP_ROOT / f"zip_{autoinc}"
tmp.mkdir(parents=True, exist_ok=True)
shutil.unpack_archive(f.name, tmp)
yaml_path = next(tmp.rglob("*.yaml"), None)
if yaml_path is None:
continue
names = load_yaml(yaml_path).get("names", [])
splits = [s for s in ("train","valid","test") if (tmp / s).exists()]
info_list.append((str(tmp), names, splits, tmp.name))
log_lines.append(f"βœ”οΈ ZIP **{tmp.name}** loaded")
return info_list, "\n".join(log_lines) if log_lines else "No datasets loaded."
load_btn.click(_load_cb, [rf_key, rf_urls, zips_in], [ds_state, load_log])
# ------------- Class map editable table --------------------------
gr.Markdown("### 2️⃣ Edit class mapping / limits / removal")
class_df = gr.Dataframe(
headers=["original_class", "new_name", "max_images", "remove"],
datatype=["str", "str", "number", "bool"],
interactive=True, elem_id="classdf"
)
refresh_btn = gr.Button("Build class table from loaded datasets")
def _build_class_df(ds_info):
class_names_all = []
for _dloc, names, _spl, _ in ds_info:
class_names_all.extend(names)
class_names_all = sorted(set(class_names_all))
df = pd.DataFrame({
"original_class": class_names_all,
"new_name": class_names_all,
"max_images": [99999] * len(class_names_all),
"remove": [False] * len(class_names_all),
})
return df
refresh_btn.click(_build_class_df, [ds_state], [class_df])
# ------------- Merge button & download ---------------------------
merge_btn = gr.Button("Merge datasets ✨")
zip_out = gr.File(label="Download merged ZIP")
merge_log = gr.Markdown()
def _merge_cb(ds_info, class_df):
if not ds_info:
return None, "⚠️ Load datasets first."
out_dir = merge_datasets(ds_info, class_df)
zip_path = shutil.make_archive(str(out_dir), "zip", out_dir)
return zip_path, (
f"βœ…Β Merged dataset created at **{out_dir}** with "
f"{len(list(Path(out_dir).rglob('*.jpg')))} images."
)
merge_btn.click(_merge_cb, [ds_state, class_df], [zip_out, merge_log])
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))