import os from dotenv import load_dotenv import gradio as gr import requests from typing import List, Dict, Union import requests import wikipediaapi import pandas as pd import requests from bs4 import BeautifulSoup import re from urllib.parse import quote import spacy from googlesearch import search load_dotenv() # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Basic Agent Definition --- class BasicAgent: def __init__(self): print("BasicAgent initialized.") def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") fixed_answer = WebSearchAgent.run({question}) print(f"Agent returning fixed answer: {fixed_answer}") return fixed_answer class WebSearchAgent: def __init__(self): self.nlp = spacy.load("en_core_web_sm") self.session = requests.Session() self.session.headers.update({ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' }) self.cache = {} def analyze_query(self, query): """Analyze the query to determine intent and extract entities""" doc = self.nlp(query) analysis = { 'entities': [(ent.text, ent.label_) for ent in doc.ents], 'intent': self._determine_intent(query.lower()), 'time_constraints': self._extract_time_constraints(query), 'quantities': self._extract_quantities(query) } return analysis def _determine_intent(self, query): """Determine the intent of the query""" if 'how many' in query: return 'count' elif 'when' in query: return 'date' elif 'who' in query: return 'person' elif 'what is' in query or 'define' in query: return 'definition' elif 'list' in query or 'name all' in query: return 'list' return 'general' def _extract_time_constraints(self, text): """Extract time ranges from text""" constraints = [] # Match patterns like "between 2000 and 2009" range_match = re.search(r'between (\d{4}) and (\d{4})', text) if range_match: constraints.append(('range', int(range_match.group(1)), int(range_match.group(2)))) # Match patterns like "in 2005" year_match = re.search(r'in (\d{4})', text) if year_match: constraints.append(('point', int(year_match.group(1)))) return constraints def _extract_quantities(self, text): """Extract numerical quantities from text""" return [int(match) for match in re.findall(r'\b(\d+)\b', text)] def search_web(self, query, num_results=3): """Search the web using multiple sources""" sources = { 'wikipedia': self._search_wikipedia, 'google': self._search_google } results = [] for source_name, search_func in sources.items(): try: results.extend(search_func(query, num_results)) except Exception as e: print(f"Error searching {source_name}: {e}") return results[:num_results*2] # Return max of double the requested results def _search_wikipedia(self, query, num_results): """Search Wikipedia API""" url = "https://en.wikipedia.org/w/api.php" params = { 'action': 'query', 'list': 'search', 'srsearch': query, 'format': 'json', 'srlimit': num_results } response = self.session.get(url, params=params).json() return [{ 'url': f"https://en.wikipedia.org/wiki/{item['title'].replace(' ', '_')}", 'title': item['title'], 'snippet': item['snippet'], 'source': 'wikipedia' } for item in response['query']['search']] def _search_google(self, query, num_results): """Search Google using python-googlesearch""" return [{ 'url': url, 'source': 'google' } for url in search(query, num_results=num_results, stop=num_results)] def fetch_page(self, url): """Fetch and parse a web page with caching""" if url in self.cache: return self.cache[url] try: response = self.session.get(url, timeout=10) soup = BeautifulSoup(response.text, 'html.parser') # Clean the page content for element in soup(['script', 'style', 'nav', 'footer']): element.decompose() page_data = { 'url': url, 'title': soup.title.string if soup.title else '', 'text': ' '.join(soup.stripped_strings), 'soup': soup } self.cache[url] = page_data return page_data except Exception as e: print(f"Error fetching {url}: {e}") return None def extract_answer(self, page, analysis): """Extract relevant information from a page based on query analysis""" if not page: return None if analysis['intent'] == 'count': return self._extract_count(page['text'], analysis) elif analysis['intent'] == 'date': return self._extract_date(page['text'], analysis) elif analysis['intent'] == 'list': return self._extract_list(page['soup'], analysis) else: return self._extract_general(page['text'], analysis) def _extract_count(self, text, analysis): """Extract a count/number from text""" entities = [e[0] for e in analysis['entities']] pattern = r'(\b\d+\b)[^\.]*\b(' + '|'.join(re.escape(e) for e in entities) + r')\b' matches = re.finditer(pattern, text, re.IGNORECASE) counts = [int(match.group(1)) for match in matches] return max(counts) if counts else None def _extract_date(self, text, analysis): """Extract dates from text""" date_pattern = r'\b(\d{1,2}(?:st|nd|rd|th)?\s+(?:\w+)\s+\d{4}|\d{4})\b' dates = [match.group(0) for match in re.finditer(date_pattern, text)] entities = [e[0] for e in analysis['entities']] return next((d for d in dates if any(e.lower() in text.lower() for e in entities)), None) def _extract_list(self, soup, analysis): """Extract list items from page""" entities = [e[0] for e in analysis['entities']] items = [] for list_tag in soup.find_all(['ul', 'ol']): list_items = [li.get_text().strip() for li in list_tag.find_all('li')] if any(e.lower() in ' '.join(list_items).lower() for e in entities): items.extend(list_items) return items if items else None def _extract_general(self, text, analysis): """Extract general information from text""" entities = [e[0] for e in analysis['entities']] sentences = re.split(r'(?