wt002 commited on
Commit
7240bca
·
verified ·
1 Parent(s): dd95935

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +194 -95
agent.py CHANGED
@@ -1,114 +1,213 @@
1
  # agent.py
2
  import os
3
  from dotenv import load_dotenv
4
- from typing import TypedDict, Annotated, Sequence, Dict, Any, List
5
- from langchain_core.messages import BaseMessage, HumanMessage
6
- from langchain_core.tools import tool
7
- from langchain_openai import ChatOpenAI
8
- from langgraph.graph import END, StateGraph
9
  from langgraph.prebuilt import ToolNode
10
- from langchain_community.tools import DuckDuckGoSearchResults
11
- from langchain_community.utilities import WikipediaAPIWrapper
12
- from langchain.agents import create_tool_calling_agent, AgentExecutor
13
- from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
14
- import operator
 
 
 
 
 
 
15
 
16
  load_dotenv()
17
 
18
- class AgentState(TypedDict):
19
- messages: Annotated[Sequence[BaseMessage], operator.add]
20
- sender: str
21
-
22
  @tool
23
- def wikipedia_search(query: str) -> str:
24
- """Search Wikipedia for information."""
25
- return WikipediaAPIWrapper().run(query)
 
 
 
 
26
 
27
  @tool
28
- def web_search(query: str, num_results: int = 3) -> list:
29
- """Search the web for current information."""
30
- return DuckDuckGoSearchResults(num_results=num_results).run(query)
 
 
 
 
 
31
 
32
  @tool
33
- def calculate(expression: str) -> str:
34
- """Evaluate mathematical expressions."""
35
- from langchain_experimental.utilities import PythonREPL
36
- python_repl = PythonREPL()
37
- return python_repl.run(expression)
38
-
39
- class AIAgent:
40
- def __init__(self, model_name: str = "gpt-3.5-turbo"):
41
- self.tools = [wikipedia_search, web_search, calculate]
42
- self.llm = ChatOpenAI(model=model_name, temperature=0.7)
43
- self.agent_executor = self._build_agent_executor()
44
- self.workflow = self._build_workflow() # Correct attribute name
45
 
46
- def _build_agent_executor(self) -> AgentExecutor:
47
- """Build the agent executor"""
48
- prompt = ChatPromptTemplate.from_messages([
49
- ("system", "You are a helpful AI assistant. Use tools when needed."),
50
- MessagesPlaceholder(variable_name="messages"),
51
- MessagesPlaceholder(variable_name="agent_scratchpad"),
52
- ])
53
- agent = create_tool_calling_agent(self.llm, self.tools, prompt)
54
- return AgentExecutor(agent=agent, tools=self.tools, verbose=True)
55
 
56
- def _build_workflow(self) -> StateGraph:
57
- """Build and return the compiled workflow"""
58
- workflow = StateGraph(AgentState)
59
-
60
- workflow.add_node("agent", self._run_agent)
61
- workflow.add_node("tools", ToolNode(self.tools))
62
-
63
- workflow.set_entry_point("agent")
64
- workflow.add_conditional_edges(
65
- "agent",
66
- self._should_continue,
67
- {"continue": "tools", "end": END}
68
- )
69
- workflow.add_edge("tools", "agent")
70
-
71
- return workflow.compile()
72
 
73
- def _run_agent(self, state: AgentState) -> Dict[str, Any]:
74
- """Execute the agent"""
75
- response = self.agent_executor.invoke({"messages": state["messages"]})
76
- return {"messages": [response["output"]]}
 
 
 
 
 
77
 
78
- def _should_continue(self, state: AgentState) -> str:
79
- """Determine if the workflow should continue"""
80
- last_message = state["messages"][-1]
81
- return "continue" if last_message.additional_kwargs.get("tool_calls") else "end"
 
 
 
 
 
 
 
 
 
82
 
83
- def __call__(self, query: str) -> Dict[str, Any]:
84
- """Process a user query"""
85
- state = AgentState(messages=[HumanMessage(content=query)], sender="user")
86
-
87
- for output in self.workflow.stream(state):
88
- for key, value in output.items():
89
- if key == "messages":
90
- for message in value:
91
- if isinstance(message, BaseMessage):
92
- return {
93
- "response": message.content,
94
- "sources": self._extract_sources(state["messages"]),
95
- "steps": self._extract_steps(state["messages"])
96
- }
97
- return {"response": "No response generated", "sources": [], "steps": []}
98
 
99
- def _extract_sources(self, messages: Sequence[BaseMessage]) -> List[str]:
100
- """Extract sources from tool messages"""
101
- return [
102
- f"{msg.additional_kwargs.get('name', 'unknown')}: {msg.content}"
103
- for msg in messages
104
- if hasattr(msg, 'additional_kwargs') and 'name' in msg.additional_kwargs
105
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
 
107
- def _extract_steps(self, messages: Sequence[BaseMessage]) -> List[str]:
108
- """Extract reasoning steps"""
109
- steps = []
110
- for msg in messages:
111
- if hasattr(msg, 'additional_kwargs') and 'tool_calls' in msg.additional_kwargs:
112
- for call in msg.additional_kwargs['tool_calls']:
113
- steps.append(f"Used {call['function']['name']}: {call['function']['arguments']}")
114
- return steps
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # agent.py
2
  import os
3
  from dotenv import load_dotenv
4
+ from langgraph.graph import START, StateGraph, MessagesState
5
+ from langgraph.prebuilt import tools_condition
 
 
 
6
  from langgraph.prebuilt import ToolNode
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain_groq import ChatGroq
9
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
+ from langchain_community.tools.tavily_search import TavilySearchResults
11
+ from langchain_community.document_loaders import WikipediaLoader
12
+ from langchain_community.document_loaders import ArxivLoader
13
+ from langchain_community.vectorstores import SupabaseVectorStore
14
+ from langchain_core.messages import SystemMessage, HumanMessage
15
+ from langchain_core.tools import tool
16
+ from langchain.tools.retriever import create_retriever_tool
17
+ from supabase.client import Client, create_client
18
 
19
  load_dotenv()
20
 
 
 
 
 
21
  @tool
22
+ def multiply(a: int, b: int) -> int:
23
+ """Multiply two numbers.
24
+ Args:
25
+ a: first int
26
+ b: second int
27
+ """
28
+ return a * b
29
 
30
  @tool
31
+ def add(a: int, b: int) -> int:
32
+ """Add two numbers.
33
+
34
+ Args:
35
+ a: first int
36
+ b: second int
37
+ """
38
+ return a + b
39
 
40
  @tool
41
+ def subtract(a: int, b: int) -> int:
42
+ """Subtract two numbers.
 
 
 
 
 
 
 
 
 
 
43
 
44
+ Args:
45
+ a: first int
46
+ b: second int
47
+ """
48
+ return a - b
49
+
50
+ @tool
51
+ def divide(a: int, b: int) -> int:
52
+ """Divide two numbers.
53
 
54
+ Args:
55
+ a: first int
56
+ b: second int
57
+ """
58
+ if b == 0:
59
+ raise ValueError("Cannot divide by zero.")
60
+ return a / b
61
+
62
+ @tool
63
+ def modulus(a: int, b: int) -> int:
64
+ """Get the modulus of two numbers.
 
 
 
 
 
65
 
66
+ Args:
67
+ a: first int
68
+ b: second int
69
+ """
70
+ return a % b
71
+
72
+ @tool
73
+ def wiki_search(query: str) -> str:
74
+ """Search Wikipedia for a query and return maximum 2 results.
75
 
76
+ Args:
77
+ query: The search query."""
78
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
79
+ formatted_search_docs = "\n\n---\n\n".join(
80
+ [
81
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
82
+ for doc in search_docs
83
+ ])
84
+ return {"wiki_results": formatted_search_docs}
85
+
86
+ @tool
87
+ def web_search(query: str) -> str:
88
+ """Search Tavily for a query and return maximum 3 results.
89
 
90
+ Args:
91
+ query: The search query."""
92
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
93
+ formatted_search_docs = "\n\n---\n\n".join(
94
+ [
95
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
96
+ for doc in search_docs
97
+ ])
98
+ return {"web_results": formatted_search_docs}
99
+
100
+ @tool
101
+ def arvix_search(query: str) -> str:
102
+ """Search Arxiv for a query and return maximum 3 result.
 
 
103
 
104
+ Args:
105
+ query: The search query."""
106
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
107
+ formatted_search_docs = "\n\n---\n\n".join(
108
+ [
109
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
110
+ for doc in search_docs
111
+ ])
112
+ return {"arvix_results": formatted_search_docs}
113
+
114
+
115
+
116
+ # load the system prompt from the file
117
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
118
+ system_prompt = f.read()
119
+
120
+ # System message
121
+ sys_msg = SystemMessage(content=system_prompt)
122
+
123
+ # build a retriever
124
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
125
+ supabase: Client = create_client(
126
+ os.environ.get("SUPABASE_URL"),
127
+ os.environ.get("SUPABASE_SERVICE_KEY"))
128
+ vector_store = SupabaseVectorStore(
129
+ client=supabase,
130
+ embedding= embeddings,
131
+ table_name="documents",
132
+ query_name="match_documents_langchain",
133
+ )
134
+ create_retriever_tool = create_retriever_tool(
135
+ retriever=vector_store.as_retriever(),
136
+ name="Question Search",
137
+ description="A tool to retrieve similar questions from a vector store.",
138
+ )
139
+
140
+
141
+
142
+ tools = [
143
+ multiply,
144
+ add,
145
+ subtract,
146
+ divide,
147
+ modulus,
148
+ wiki_search,
149
+ web_search,
150
+ arvix_search,
151
+ ]
152
+
153
+ # Build graph function
154
+ def build_graph(provider: str = "groq"):
155
+ """Build the graph"""
156
+ # Load environment variables from .env file
157
+ if provider == "google":
158
+ # Google Gemini
159
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
160
+ elif provider == "groq":
161
+ # Groq https://console.groq.com/docs/models
162
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
163
+ elif provider == "huggingface":
164
+ # TODO: Add huggingface endpoint
165
+ llm = ChatHuggingFace(
166
+ llm=HuggingFaceEndpoint(
167
+ url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
168
+ temperature=0,
169
+ ),
170
+ )
171
+ else:
172
+ raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
173
+ # Bind tools to LLM
174
+ llm_with_tools = llm.bind_tools(tools)
175
+
176
+ # Node
177
+ def assistant(state: MessagesState):
178
+ """Assistant node"""
179
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
180
 
181
+ def retriever(state: MessagesState):
182
+ """Retriever node"""
183
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
184
+ example_msg = HumanMessage(
185
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
186
+ )
187
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
188
+
189
+ builder = StateGraph(MessagesState)
190
+ builder.add_node("retriever", retriever)
191
+ builder.add_node("assistant", assistant)
192
+ builder.add_node("tools", ToolNode(tools))
193
+ builder.add_edge(START, "retriever")
194
+ builder.add_edge("retriever", "assistant")
195
+ builder.add_conditional_edges(
196
+ "assistant",
197
+ tools_condition,
198
+ )
199
+ builder.add_edge("tools", "assistant")
200
+
201
+ # Compile graph
202
+ return builder.compile()
203
+
204
+ # test
205
+ if __name__ == "__main__":
206
+ question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
207
+ # Build the graph
208
+ graph = build_graph(provider="groq")
209
+ # Run the graph
210
+ messages = [HumanMessage(content=question)]
211
+ messages = graph.invoke({"messages": messages})
212
+ for m in messages["messages"]:
213
+ m.pretty_print()