Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,13 @@ from dotenv import load_dotenv
|
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
|
6 |
-
|
7 |
import requests
|
8 |
-
#import wikipediaapi
|
9 |
-
#import google.generativeai as genai
|
10 |
from typing import List, Dict, Union
|
11 |
-
import requests
|
12 |
import pandas as pd
|
|
|
|
|
|
|
13 |
|
14 |
load_dotenv()
|
15 |
|
@@ -17,27 +17,22 @@ load_dotenv()
|
|
17 |
# --- Constants ---
|
18 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
19 |
|
20 |
-
# Configure Gemini
|
21 |
-
#genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
22 |
|
23 |
# --- Basic Agent Definition ---
|
24 |
class BasicAgent:
|
25 |
-
def __init__(self, model="
|
26 |
self.api_url = f"https://api-inference.huggingface.co/models/{model}"
|
27 |
self.headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
print("BasicAgent initialized.")
|
29 |
-
|
30 |
-
# Initialize other required components
|
31 |
-
self.searx_url = "https://searx.space/search" # Set your SearxNG instance URL
|
32 |
-
#self.wiki = wikipediaapi.Wikipedia('en') # Requires wikipedia-api package
|
33 |
-
|
34 |
-
#genai.configure(api_key=os.getenv('GEMINI_API_KEY'))
|
35 |
-
#self.model = genai.GenerativeModel(model)
|
36 |
-
#usage
|
37 |
-
#agent = HuggingFaceAgent("google/gemma-7b") # Same architecture as Gemini
|
38 |
-
#print(agent.generate("Explain quantum computing"))
|
39 |
-
|
40 |
-
|
41 |
def __call__(self, question: str) -> str:
|
42 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
43 |
fixed_answer = self.generate_response(question)
|
@@ -45,19 +40,21 @@ class BasicAgent:
|
|
45 |
return fixed_answer
|
46 |
|
47 |
|
48 |
-
# to check
|
49 |
def generate_response(self, prompt: str) -> str:
|
50 |
-
"""Get response from
|
51 |
try:
|
52 |
-
response =
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
54 |
except Exception as e:
|
55 |
return f"Error generating response: {str(e)}"
|
56 |
|
57 |
-
|
58 |
-
|
59 |
def web_search(self, query: str) -> List[Dict]:
|
60 |
-
"""
|
61 |
params = {
|
62 |
"q": query,
|
63 |
"format": "json",
|
@@ -70,13 +67,13 @@ class BasicAgent:
|
|
70 |
except requests.RequestException:
|
71 |
return []
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
def process_document(self, file_path: str) -> str:
|
79 |
-
"""
|
80 |
if not os.path.exists(file_path):
|
81 |
return "File not found"
|
82 |
|
@@ -84,9 +81,12 @@ class BasicAgent:
|
|
84 |
|
85 |
try:
|
86 |
if ext == '.pdf':
|
87 |
-
|
|
|
|
|
88 |
elif ext in ('.doc', '.docx'):
|
89 |
-
|
|
|
90 |
elif ext == '.csv':
|
91 |
return pd.read_csv(file_path).to_string()
|
92 |
elif ext in ('.xls', '.xlsx'):
|
@@ -96,54 +96,44 @@ class BasicAgent:
|
|
96 |
except Exception as e:
|
97 |
return f"Error processing document: {str(e)}"
|
98 |
|
99 |
-
def
|
100 |
-
"""
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
try:
|
112 |
-
import PyPDF2
|
113 |
-
with open(file_path, 'rb') as f:
|
114 |
-
reader = PyPDF2.PdfReader(f)
|
115 |
-
return "\n".join([page.extract_text() for page in reader.pages])
|
116 |
-
except ImportError:
|
117 |
-
return "PDF processing requires PyPDF2 (pip install PyPDF2)"
|
118 |
-
|
119 |
-
def _process_word(self, file_path: str) -> str:
|
120 |
-
"""Process Word documents"""
|
121 |
-
try:
|
122 |
-
from docx import Document
|
123 |
-
doc = Document(file_path)
|
124 |
-
return "\n".join([para.text for para in doc.paragraphs])
|
125 |
-
except ImportError:
|
126 |
-
return "Word processing requires python-docx (pip install python-docx)"
|
127 |
-
|
128 |
-
def process_request(self, request: Union[str, Dict]) -> str:
|
129 |
-
"""
|
130 |
-
Handle different request types:
|
131 |
-
- Direct text queries
|
132 |
-
- File processing requests
|
133 |
-
- Complex multi-step requests
|
134 |
-
"""
|
135 |
-
if isinstance(request, dict):
|
136 |
-
if 'steps' in request:
|
137 |
-
results = []
|
138 |
-
for step in request['steps']:
|
139 |
-
if step['type'] == 'search':
|
140 |
-
results.append(self.web_search(step['query']))
|
141 |
-
elif step['type'] == 'process':
|
142 |
-
results.append(self.process_document(step['file']))
|
143 |
-
return self.generate_response(f"Process these results: {results}")
|
144 |
-
return "Unsupported request format"
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
149 |
"""
|
|
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
|
6 |
+
import os
|
7 |
import requests
|
|
|
|
|
8 |
from typing import List, Dict, Union
|
|
|
9 |
import pandas as pd
|
10 |
+
import wikipediaapi
|
11 |
+
import PyPDF2
|
12 |
+
from docx import Document
|
13 |
|
14 |
load_dotenv()
|
15 |
|
|
|
17 |
# --- Constants ---
|
18 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
19 |
|
|
|
|
|
20 |
|
21 |
# --- Basic Agent Definition ---
|
22 |
class BasicAgent:
|
23 |
+
def __init__(self, model="gemini-2.0-flash-lite"):
|
24 |
self.api_url = f"https://api-inference.huggingface.co/models/{model}"
|
25 |
self.headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"}
|
26 |
+
# Wikipedia setup (with proper User-Agent)
|
27 |
+
self.wiki = wikipediaapi.Wikipedia(
|
28 |
+
language='en',
|
29 |
+
user_agent='SearchAgent/1.0 ([email protected])' # CHANGE THIS!
|
30 |
+
)
|
31 |
+
|
32 |
+
# SearxNG meta-search (replace with your instance)
|
33 |
+
self.searx_url = "https://searx.space/search" # CHANGE THIS!
|
34 |
print("BasicAgent initialized.")
|
35 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def __call__(self, question: str) -> str:
|
37 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
38 |
fixed_answer = self.generate_response(question)
|
|
|
40 |
return fixed_answer
|
41 |
|
42 |
|
|
|
43 |
def generate_response(self, prompt: str) -> str:
|
44 |
+
"""Get response from HuggingFace model"""
|
45 |
try:
|
46 |
+
response = requests.post(
|
47 |
+
self.api_url,
|
48 |
+
headers=self.headers,
|
49 |
+
json={"inputs": prompt}
|
50 |
+
)
|
51 |
+
response.raise_for_status()
|
52 |
+
return response.json()[0]['generated_text']
|
53 |
except Exception as e:
|
54 |
return f"Error generating response: {str(e)}"
|
55 |
|
|
|
|
|
56 |
def web_search(self, query: str) -> List[Dict]:
|
57 |
+
"""Search using SearxNG (meta-search engine)"""
|
58 |
params = {
|
59 |
"q": query,
|
60 |
"format": "json",
|
|
|
67 |
except requests.RequestException:
|
68 |
return []
|
69 |
|
70 |
+
def wikipedia_search(self, query: str) -> str:
|
71 |
+
"""Get Wikipedia summary"""
|
72 |
+
page = self.wiki.page(query)
|
73 |
+
return page.summary if page.exists() else "No Wikipedia page found"
|
74 |
|
75 |
def process_document(self, file_path: str) -> str:
|
76 |
+
"""Extract text from PDF, Word, CSV, Excel"""
|
77 |
if not os.path.exists(file_path):
|
78 |
return "File not found"
|
79 |
|
|
|
81 |
|
82 |
try:
|
83 |
if ext == '.pdf':
|
84 |
+
with open(file_path, 'rb') as f:
|
85 |
+
reader = PyPDF2.PdfReader(f)
|
86 |
+
return "\n".join([page.extract_text() for page in reader.pages])
|
87 |
elif ext in ('.doc', '.docx'):
|
88 |
+
doc = Document(file_path)
|
89 |
+
return "\n".join([para.text for para in doc.paragraphs])
|
90 |
elif ext == '.csv':
|
91 |
return pd.read_csv(file_path).to_string()
|
92 |
elif ext in ('.xls', '.xlsx'):
|
|
|
96 |
except Exception as e:
|
97 |
return f"Error processing document: {str(e)}"
|
98 |
|
99 |
+
def __call__(self, query: str) -> str:
|
100 |
+
"""Handle queries (text, search, or file processing)"""
|
101 |
+
print(f"Processing query: {query[:50]}...")
|
102 |
+
|
103 |
+
# If it's a file path, process it
|
104 |
+
if os.path.exists(query):
|
105 |
+
return self.process_document(query)
|
106 |
+
|
107 |
+
# If it's a Wikipedia-style query (e.g., "wikipedia:Python")
|
108 |
+
if query.lower().startswith("wikipedia:"):
|
109 |
+
topic = query.split(":")[1].strip()
|
110 |
+
return self.wikipedia_search(topic)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
# If it's a web search (e.g., "search:best LLMs 2024")
|
113 |
+
if query.lower().startswith("search:"):
|
114 |
+
search_query = query.split(":")[1].strip()
|
115 |
+
results = self.web_search(search_query)
|
116 |
+
return "\n".join([f"{r['title']}: {r['url']}" for r in results])
|
117 |
+
|
118 |
+
# Default: Use HuggingFace for text generation
|
119 |
+
return self.generate_response(query)
|
120 |
+
|
121 |
+
# Example Usage
|
122 |
+
if __name__ == "__main__":
|
123 |
+
agent = BasicAgent()
|
124 |
+
|
125 |
+
# Test Wikipedia search
|
126 |
+
print(agent("wikipedia:Python"))
|
127 |
+
|
128 |
+
# Test web search (requires SearxNG instance)
|
129 |
+
# print(agent("search:best programming languages 2024"))
|
130 |
+
|
131 |
+
# Test text generation
|
132 |
+
print(agent("Explain quantum computing in simple terms"))
|
133 |
+
|
134 |
+
# Test file processing (example: PDF)
|
135 |
+
# print(agent("/path/to/document.pdf"))
|
136 |
+
|
137 |
|
138 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
139 |
"""
|