Spaces:
Restarting
Restarting
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from typing import TypedDict, Annotated, Sequence
|
2 |
from langchain_core.messages import BaseMessage, HumanMessage
|
3 |
from langchain_core.tools import tool
|
@@ -10,14 +11,11 @@ from langchain.agents import create_tool_calling_agent
|
|
10 |
from langchain.agents import AgentExecutor
|
11 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
12 |
import operator
|
13 |
-
import json
|
14 |
|
15 |
-
# Define the agent state
|
16 |
class AgentState(TypedDict):
|
17 |
messages: Annotated[Sequence[BaseMessage], operator.add]
|
18 |
sender: str
|
19 |
|
20 |
-
# Initialize tools
|
21 |
@tool
|
22 |
def wikipedia_search(query: str) -> str:
|
23 |
"""Search Wikipedia for information."""
|
@@ -31,75 +29,50 @@ def web_search(query: str, num_results: int = 3) -> list:
|
|
31 |
@tool
|
32 |
def calculate(expression: str) -> str:
|
33 |
"""Evaluate mathematical expressions."""
|
34 |
-
from langchain_experimental.
|
35 |
-
python_repl =
|
36 |
-
return python_repl.run(
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
# Build the graph workflow
|
48 |
-
self.workflow = self._build_graph()
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
"""
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
# Define edges
|
70 |
-
workflow.set_entry_point("agent")
|
71 |
-
workflow.add_conditional_edges(
|
72 |
-
"agent",
|
73 |
-
self._should_continue,
|
74 |
-
{
|
75 |
-
"continue": "tools",
|
76 |
-
"end": END
|
77 |
-
}
|
78 |
-
)
|
79 |
-
workflow.add_edge("tools", "agent")
|
80 |
-
|
81 |
-
return workflow.compile()
|
82 |
-
|
83 |
-
def _call_agent(self, state: AgentState):
|
84 |
-
"""Execute the agent"""
|
85 |
-
response = self.agent.invoke({"messages": state["messages"]})
|
86 |
-
return {"messages": [response["output"]]}
|
87 |
-
|
88 |
-
def _should_continue(self, state: AgentState):
|
89 |
-
"""Determine if the workflow should continue"""
|
90 |
-
last_message = state["messages"][-1]
|
91 |
-
|
92 |
-
# If no tool calls, end
|
93 |
-
if not last_message.additional_kwargs.get("tool_calls"):
|
94 |
-
return "end"
|
95 |
-
return "continue"
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
def __call__(self, query: str) -> dict:
|
98 |
"""Process a user query"""
|
99 |
-
# Initialize state
|
100 |
state = AgentState(messages=[HumanMessage(content=query)], sender="user")
|
101 |
|
102 |
-
# Execute the workflow
|
103 |
for output in self.workflow.stream(state):
|
104 |
for key, value in output.items():
|
105 |
if key == "messages":
|
@@ -110,20 +83,25 @@ class AdvancedAIAgent:
|
|
110 |
"sources": self._extract_sources(state["messages"]),
|
111 |
"steps": self._extract_steps(state["messages"])
|
112 |
}
|
113 |
-
|
|
|
114 |
def _extract_sources(self, messages: Sequence[BaseMessage]) -> list:
|
115 |
-
"""Extract sources from tool messages"""
|
116 |
return [
|
117 |
f"{msg.additional_kwargs.get('name', 'unknown')}: {msg.content}"
|
118 |
for msg in messages
|
119 |
if hasattr(msg, 'additional_kwargs') and 'name' in msg.additional_kwargs
|
120 |
]
|
121 |
-
|
122 |
def _extract_steps(self, messages: Sequence[BaseMessage]) -> list:
|
123 |
-
"""Extract reasoning steps"""
|
124 |
steps = []
|
125 |
for msg in messages:
|
126 |
if hasattr(msg, 'additional_kwargs') and 'tool_calls' in msg.additional_kwargs:
|
127 |
for call in msg.additional_kwargs['tool_calls']:
|
128 |
steps.append(f"Used {call['function']['name']}: {call['function']['arguments']}")
|
129 |
-
return steps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# agent.py
|
2 |
from typing import TypedDict, Annotated, Sequence
|
3 |
from langchain_core.messages import BaseMessage, HumanMessage
|
4 |
from langchain_core.tools import tool
|
|
|
11 |
from langchain.agents import AgentExecutor
|
12 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
13 |
import operator
|
|
|
14 |
|
|
|
15 |
class AgentState(TypedDict):
|
16 |
messages: Annotated[Sequence[BaseMessage], operator.add]
|
17 |
sender: str
|
18 |
|
|
|
19 |
@tool
|
20 |
def wikipedia_search(query: str) -> str:
|
21 |
"""Search Wikipedia for information."""
|
|
|
29 |
@tool
|
30 |
def calculate(expression: str) -> str:
|
31 |
"""Evaluate mathematical expressions."""
|
32 |
+
from langchain_experimental.utilities import PythonREPL
|
33 |
+
python_repl = PythonREPL()
|
34 |
+
return python_repl.run(expression)
|
35 |
|
36 |
+
def build_agent(tools: list, llm: ChatOpenAI) -> AgentExecutor:
|
37 |
+
"""Build the agent executor"""
|
38 |
+
prompt = ChatPromptTemplate.from_messages([
|
39 |
+
("system", "You are a helpful AI assistant. Use tools when needed."),
|
40 |
+
MessagesPlaceholder(variable_name="messages"),
|
41 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
42 |
+
])
|
43 |
+
agent = create_tool_calling_agent(llm, tools, prompt)
|
44 |
+
return AgentExecutor(agent=agent, tools=tools, verbose=True)
|
|
|
|
|
45 |
|
46 |
+
def build_graph(tools: list, agent: AgentExecutor) -> StateGraph:
|
47 |
+
"""Build the LangGraph workflow"""
|
48 |
+
workflow = StateGraph(AgentState)
|
49 |
+
|
50 |
+
# Define nodes
|
51 |
+
workflow.add_node("agent", lambda state: {"messages": [agent.invoke(state)["output"]]})
|
52 |
+
workflow.add_node("tools", ToolNode(tools))
|
53 |
+
|
54 |
+
# Define edges
|
55 |
+
workflow.set_entry_point("agent")
|
56 |
+
workflow.add_conditional_edges(
|
57 |
+
"agent",
|
58 |
+
lambda state: "continue" if state["messages"][-1].additional_kwargs.get("tool_calls") else "end",
|
59 |
+
{"continue": "tools", "end": END}
|
60 |
+
)
|
61 |
+
workflow.add_edge("tools", "agent")
|
62 |
+
|
63 |
+
return workflow.compile()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
class AIAgent:
|
66 |
+
def __init__(self, model_name: str = "gpt-4-turbo"):
|
67 |
+
self.tools = [wikipedia_search, web_search, calculate]
|
68 |
+
self.llm = ChatOpenAI(model=model_name, temperature=0.7)
|
69 |
+
self.agent = build_agent(self.tools, self.llm)
|
70 |
+
self.workflow = build_graph(self.tools, self.agent)
|
71 |
+
|
72 |
def __call__(self, query: str) -> dict:
|
73 |
"""Process a user query"""
|
|
|
74 |
state = AgentState(messages=[HumanMessage(content=query)], sender="user")
|
75 |
|
|
|
76 |
for output in self.workflow.stream(state):
|
77 |
for key, value in output.items():
|
78 |
if key == "messages":
|
|
|
83 |
"sources": self._extract_sources(state["messages"]),
|
84 |
"steps": self._extract_steps(state["messages"])
|
85 |
}
|
86 |
+
return {"response": "No response generated", "sources": [], "steps": []}
|
87 |
+
|
88 |
def _extract_sources(self, messages: Sequence[BaseMessage]) -> list:
|
|
|
89 |
return [
|
90 |
f"{msg.additional_kwargs.get('name', 'unknown')}: {msg.content}"
|
91 |
for msg in messages
|
92 |
if hasattr(msg, 'additional_kwargs') and 'name' in msg.additional_kwargs
|
93 |
]
|
94 |
+
|
95 |
def _extract_steps(self, messages: Sequence[BaseMessage]) -> list:
|
|
|
96 |
steps = []
|
97 |
for msg in messages:
|
98 |
if hasattr(msg, 'additional_kwargs') and 'tool_calls' in msg.additional_kwargs:
|
99 |
for call in msg.additional_kwargs['tool_calls']:
|
100 |
steps.append(f"Used {call['function']['name']}: {call['function']['arguments']}")
|
101 |
+
return steps
|
102 |
+
|
103 |
+
# Example usage
|
104 |
+
if __name__ == "__main__":
|
105 |
+
agent = AIAgent()
|
106 |
+
response = agent("What's the capital of France?")
|
107 |
+
print(response)
|