wt002's picture
Update agent.py
ba80365 verified
raw
history blame
4.34 kB
# agent.py
from typing import TypedDict, Annotated, Sequence
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_community.utilities import WikipediaAPIWrapper
from langchain.agents import create_tool_calling_agent
from langchain.agents import AgentExecutor
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
import operator
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
sender: str
@tool
def wikipedia_search(query: str) -> str:
"""Search Wikipedia for information."""
return WikipediaAPIWrapper().run(query)
@tool
def web_search(query: str, num_results: int = 3) -> list:
"""Search the web for current information."""
return DuckDuckGoSearchResults(num_results=num_results).run(query)
@tool
def calculate(expression: str) -> str:
"""Evaluate mathematical expressions."""
from langchain_experimental.utilities import PythonREPL
python_repl = PythonREPL()
return python_repl.run(expression)
def build_agent(tools: list, llm: ChatOpenAI) -> AgentExecutor:
"""Build the agent executor"""
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful AI assistant. Use tools when needed."),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
])
agent = create_tool_calling_agent(llm, tools, prompt)
return AgentExecutor(agent=agent, tools=tools, verbose=True)
def build_graph(tools: list, agent: AgentExecutor) -> StateGraph:
"""Build the LangGraph workflow"""
workflow = StateGraph(AgentState)
# Define nodes
workflow.add_node("agent", lambda state: {"messages": [agent.invoke(state)["output"]]})
workflow.add_node("tools", ToolNode(tools))
# Define edges
workflow.set_entry_point("agent")
workflow.add_conditional_edges(
"agent",
lambda state: "continue" if state["messages"][-1].additional_kwargs.get("tool_calls") else "end",
{"continue": "tools", "end": END}
)
workflow.add_edge("tools", "agent")
return workflow.compile()
class AdvancedAIAgent:
def __init__(self, model_name: str = "gpt-4-turbo"):
self.tools = [wikipedia_search, web_search, calculate]
self.llm = ChatOpenAI(model=model_name, temperature=0.7)
self.agent = build_agent(self.tools, self.llm)
self.workflow = build_graph(self.tools, self.agent)
def __call__(self, query: str) -> dict:
"""Process a user query"""
state = AgentState(messages=[HumanMessage(content=query)], sender="user")
for output in self.workflow.stream(state):
for key, value in output.items():
if key == "messages":
for message in value:
if isinstance(message, BaseMessage):
return {
"response": message.content,
"sources": self._extract_sources(state["messages"]),
"steps": self._extract_steps(state["messages"])
}
return {"response": "No response generated", "sources": [], "steps": []}
def _extract_sources(self, messages: Sequence[BaseMessage]) -> list:
return [
f"{msg.additional_kwargs.get('name', 'unknown')}: {msg.content}"
for msg in messages
if hasattr(msg, 'additional_kwargs') and 'name' in msg.additional_kwargs
]
def _extract_steps(self, messages: Sequence[BaseMessage]) -> list:
steps = []
for msg in messages:
if hasattr(msg, 'additional_kwargs') and 'tool_calls' in msg.additional_kwargs:
for call in msg.additional_kwargs['tool_calls']:
steps.append(f"Used {call['function']['name']}: {call['function']['arguments']}")
return steps
# Example usage
#if __name__ == "__main__":
# agent = AdvancedAIAgent()
# response = agent("What's the capital of France?")
# print(response)