Spaces:
Running
Running
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from typing import TypedDict, Annotated, Sequence, Dict, Any, List, Optional | |
from langchain_core.messages import BaseMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain_openai import ChatOpenAI | |
from langgraph.graph import END, StateGraph | |
from langgraph.prebuilt import ToolNode | |
from langchain_community.tools import DuckDuckGoSearchResults | |
from langchain_community.utilities import WikipediaAPIWrapper | |
from langchain.agents import create_tool_calling_agent, AgentExecutor | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
import operator | |
from langchain_experimental.utilities import PythonREPL | |
from functools import wraps | |
import logging | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
# --- Configure logging --- | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
DEFAULT_MODEL = "gpt-3.5-turbo" | |
MAX_RESPONSE_LENGTH = 2000 # Prevent overly long responses | |
def handle_errors(func): | |
"""Decorator to handle common errors in agent operations.""" | |
def wrapper(*args, **kwargs): | |
try: | |
return func(*args, **kwargs) | |
except Exception as e: | |
logger.error(f"Error in {func.__name__}: {str(e)}") | |
return {"error": str(e)} | |
return wrapper | |
class AgentState(TypedDict): | |
messages: Annotated[Sequence[BaseMessage], operator.add] | |
sender: str | |
def wikipedia_search(query: str) -> str: | |
"""Search Wikipedia for information. Useful for historical facts, scientific concepts, and general knowledge.""" | |
try: | |
return WikipediaAPIWrapper().run(query)[:MAX_RESPONSE_LENGTH] | |
except Exception as e: | |
return f"Wikipedia search failed: {str(e)}" | |
def web_search(query: str, num_results: int = 3) -> list: | |
"""Search the web for current information. Useful for news, recent events, and up-to-date data.""" | |
try: | |
results = DuckDuckGoSearchResults(num_results=num_results).run(query) | |
return [str(r)[:500] for r in results][:num_results] # Limit result size | |
except Exception as e: | |
return [f"Web search failed: {str(e)}"] | |
def calculate(expression: str) -> str: | |
"""Evaluate mathematical expressions. Supports basic arithmetic and complex formulas.""" | |
try: | |
python_repl = PythonREPL() | |
result = python_repl.run(expression) | |
return str(result)[:100] # Limit numeric output length | |
except Exception as e: | |
return f"Calculation failed: {str(e)}" | |
class BasicAgent: | |
"""An enhanced LangGraph agent with better error handling and response processing.""" | |
def __init__(self, model_name: str = DEFAULT_MODEL, temperature: float = 0.7): | |
"""Initialize the agent with tools and workflow.""" | |
self.model_name = model_name | |
self.temperature = temperature | |
self.tools = [wikipedia_search, web_search, calculate] | |
self.llm = ChatOpenAI(model=model_name, temperature=temperature) | |
self.agent_executor = self._build_agent_executor() | |
self.workflow = self._build_workflow() | |
logger.info(f"AdvancedAgent initialized with model: {model_name}") | |
def _build_agent_executor(self) -> AgentExecutor: | |
"""Build the agent executor with proper prompt and tools.""" | |
prompt = ChatPromptTemplate.from_messages([ | |
("system", self._get_system_prompt()), | |
MessagesPlaceholder(variable_name="messages"), | |
MessagesPlaceholder(variable_name="agent_scratchpad"), | |
]) | |
agent = create_tool_calling_agent(self.llm, self.tools, prompt) | |
return AgentExecutor( | |
agent=agent, | |
tools=self.tools, | |
verbose=True, | |
handle_parsing_errors=True | |
) | |
def _get_system_prompt(self) -> str: | |
"""Return a comprehensive system prompt for the agent.""" | |
return """You are an advanced AI assistant with access to tools. Follow these rules: | |
1. Be precise and factual | |
2. Use tools when needed | |
3. Cite your sources | |
4. Break complex problems into steps | |
5. Admit when you don't know something""" | |
def _build_workflow(self) -> StateGraph: | |
"""Build and compile the agent workflow.""" | |
workflow = StateGraph(AgentState) | |
workflow.add_node("agent", self._run_agent) | |
workflow.add_node("tools", ToolNode(self.tools)) | |
workflow.set_entry_point("agent") | |
workflow.add_conditional_edges( | |
"agent", | |
self._should_continue, | |
{"continue": "tools", "end": END} | |
) | |
workflow.add_edge("tools", "agent") | |
return workflow.compile() | |
def _run_agent(self, state: AgentState) -> Dict[str, Any]: | |
"""Execute the agent with error handling.""" | |
response = self.agent_executor.invoke({"messages": state["messages"]}) | |
return {"messages": [response["output"]]} | |
def _should_continue(self, state: AgentState) -> str: | |
"""Determine if the workflow should continue based on tool calls.""" | |
last_message = state["messages"][-1] | |
return "continue" if last_message.additional_kwargs.get("tool_calls") else "end" | |
def __call__(self, query: str) -> Dict[str, Any]: | |
"""Process a user query and return a structured response.""" | |
if not query or len(query.strip()) == 0: | |
return {"error": "Empty query provided"} | |
logger.info(f"Processing query: {query[:50]}...") | |
state = AgentState(messages=[HumanMessage(content=query)], sender="user") | |
for output in self.workflow.stream(state): | |
for key, value in output.items(): | |
if key == "messages": | |
for message in value: | |
if isinstance(message, BaseMessage): | |
response = message.content[:MAX_RESPONSE_LENGTH] | |
return { | |
"response": response, | |
"sources": self._extract_sources(state["messages"]), | |
"steps": self._extract_steps(state["messages"]), | |
"model": self.model_name | |
} | |
return {"response": "No response generated", "sources": [], "steps": []} | |
def _extract_sources(self, messages: Sequence[BaseMessage]) -> List[str]: | |
"""Extract and format sources from tool messages.""" | |
sources = [] | |
for msg in messages: | |
if hasattr(msg, 'additional_kwargs') and 'name' in msg.additional_kwargs: | |
source_name = msg.additional_kwargs.get('name', 'unknown') | |
content = str(msg.content)[:200] # Truncate long content | |
sources.append(f"{source_name}: {content}") | |
return sources | |
def _extract_steps(self, messages: Sequence[BaseMessage]) -> List[str]: | |
"""Extract and format the reasoning steps.""" | |
steps = [] | |
for msg in messages: | |
if hasattr(msg, 'additional_kwargs') and 'tool_calls' in msg.additional_kwargs: | |
for call in msg.additional_kwargs['tool_calls']: | |
tool_name = call['function']['name'] | |
args = call['function']['arguments'][:100] # Truncate long args | |
steps.append(f"Used {tool_name} with args: {args}") | |
return steps | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |