wt002's picture
Update app.py
b2a7d74 verified
raw
history blame
13.2 kB
import os
from dotenv import load_dotenv
import gradio as gr
import requests
from typing import List, Dict, Union, Optional
import pandas as pd
import wikipediaapi
import requests
from bs4 import BeautifulSoup
import random
import re
from typing import Optional
from datetime import datetime
load_dotenv()
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = self.process_request(question)
print(f"Agent returning answer: {fixed_answer}")
return fixed_answer
def process_request(self, question: str) -> str:
return "This is a default answer."
class SearchAgent(BasicAgent):
def __init__(self):
super().__init__()
print("SearchAgent specialized initialization.")
def process_request(self, query: str) -> str:
# In a real implementation, this would call a search API
mock_results = [
{"url": f"https://example.com/result{i}", "title": f"Result {i} for {query[:20]}..."}
for i in range(1, 4)
]
return str(mock_results)
class BrowserAgent(BasicAgent):
def __init__(self):
super().__init__()
self.current_page = None
self.history = []
self.session = requests.Session()
self.session.headers.update({'User-Agent': 'WebNavigator/1.0'})
print("BrowserAgent initialized with fresh session.")
def process_request(self, url: str) -> str:
try:
response = self.session.get(url)
response.raise_for_status()
self.current_page = {
'url': url,
'content': response.text,
'timestamp': datetime.now()
}
self.history.append(self.current_page)
return f"Successfully retrieved page: {url}"
except Exception as e:
return f"Error visiting {url}: {str(e)}"
class ContentExtractorAgent(BasicAgent):
def __init__(self):
super().__init__()
print("ContentExtractorAgent initialized.")
def process_request(self, html: str) -> str:
soup = BeautifulSoup(html, 'html.parser')
# Remove unwanted elements
for element in soup(['script', 'style', 'nav', 'footer']):
element.decompose()
title = soup.title.string if soup.title else ""
main_content = soup.find('main') or soup.find('article') or soup.body
extracted = {
'title': title,
'text': main_content.get_text(separator='\n', strip=True),
'links': [a['href'] for a in main_content.find_all('a', href=True)]
}
return str(extracted)
class WebNavigator(BasicAgent):
def __init__(self):
super().__init__()
self.search_agent = SearchAgent()
self.browser_agent = BrowserAgent()
self.extractor_agent = ContentExtractorAgent()
self.search_history = []
print("WebNavigator fully initialized with all sub-agents.")
def process_request(self, question: str) -> str:
# First try to interpret as a direct URL
if question.startswith(('http://', 'https://')):
return self.get_page_summary(question)
# Otherwise treat as search query
return self.search_and_extract(question)
def search_and_extract(self, query: str) -> str:
search_results = eval(self.search_agent(query)) # Convert string output back to list
extracted_data = []
for result in search_results:
visit_result = self.browser_agent(result['url'])
if "Successfully" in visit_result:
html = eval(self.browser_agent.current_page['content']) # Get stored HTML
content = self.extractor_agent(html)
extracted_data.append({
'query': query,
'url': result['url'],
'content': eval(content) # Convert string output back to dict
})
self.search_history.append({
'query': query,
'timestamp': datetime.now(),
'results': extracted_data
})
return str(extracted_data)
def get_page_summary(self, url: str) -> str:
visit_result = self.browser_agent(url)
if "Successfully" in visit_result:
html = eval(self.browser_agent.current_page['content'])
content = eval(self.extractor_agent(html))
return str({
'url': url,
'title': content['title'],
'summary': ' '.join(content['text'].split()[:100]) + '...'
})
return visit_result # Return the error message
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)