Spaces:
Runtime error
Runtime error
import os | |
from dotenv import load_dotenv | |
import gradio as gr | |
import requests | |
from typing import List, Dict, Union, Optional | |
import pandas as pd | |
import wikipediaapi | |
import requests | |
from bs4 import BeautifulSoup | |
import random | |
import re | |
from typing import Optional | |
from datetime import datetime | |
load_dotenv() | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
fixed_answer = self.process_request(question) | |
print(f"Agent returning answer: {fixed_answer}") | |
return fixed_answer | |
def process_request(self, question: str) -> str: | |
return "This is a default answer." | |
class SearchAgent(BasicAgent): | |
def __init__(self): | |
super().__init__() | |
print("SearchAgent specialized initialization.") | |
def process_request(self, query: str) -> str: | |
# In a real implementation, this would call a search API | |
mock_results = [ | |
{"url": f"https://example.com/result{i}", "title": f"Result {i} for {query[:20]}..."} | |
for i in range(1, 4) | |
] | |
return str(mock_results) | |
class BrowserAgent(BasicAgent): | |
def __init__(self): | |
super().__init__() | |
self.current_page = None | |
self.history = [] | |
self.session = requests.Session() | |
self.session.headers.update({'User-Agent': 'WebNavigator/1.0'}) | |
print("BrowserAgent initialized with fresh session.") | |
def process_request(self, url: str) -> str: | |
try: | |
response = self.session.get(url) | |
response.raise_for_status() | |
self.current_page = { | |
'url': url, | |
'content': response.text, | |
'timestamp': datetime.now() | |
} | |
self.history.append(self.current_page) | |
return f"Successfully retrieved page: {url}" | |
except Exception as e: | |
return f"Error visiting {url}: {str(e)}" | |
class ContentExtractorAgent(BasicAgent): | |
def __init__(self): | |
super().__init__() | |
print("ContentExtractorAgent initialized.") | |
def process_request(self, html: str) -> str: | |
soup = BeautifulSoup(html, 'html.parser') | |
# Remove unwanted elements | |
for element in soup(['script', 'style', 'nav', 'footer']): | |
element.decompose() | |
title = soup.title.string if soup.title else "" | |
main_content = soup.find('main') or soup.find('article') or soup.body | |
extracted = { | |
'title': title, | |
'text': main_content.get_text(separator='\n', strip=True), | |
'links': [a['href'] for a in main_content.find_all('a', href=True)] | |
} | |
return str(extracted) | |
class WebNavigator(BasicAgent): | |
def __init__(self): | |
super().__init__() | |
self.search_agent = SearchAgent() | |
self.browser_agent = BrowserAgent() | |
self.extractor_agent = ContentExtractorAgent() | |
self.search_history = [] | |
print("WebNavigator fully initialized with all sub-agents.") | |
def process_request(self, question: str) -> str: | |
# First try to interpret as a direct URL | |
if question.startswith(('http://', 'https://')): | |
return self.get_page_summary(question) | |
# Otherwise treat as search query | |
return self.search_and_extract(question) | |
def search_and_extract(self, query: str) -> str: | |
search_results = eval(self.search_agent(query)) # Convert string output back to list | |
extracted_data = [] | |
for result in search_results: | |
visit_result = self.browser_agent(result['url']) | |
if "Successfully" in visit_result: | |
html = eval(self.browser_agent.current_page['content']) # Get stored HTML | |
content = self.extractor_agent(html) | |
extracted_data.append({ | |
'query': query, | |
'url': result['url'], | |
'content': eval(content) # Convert string output back to dict | |
}) | |
self.search_history.append({ | |
'query': query, | |
'timestamp': datetime.now(), | |
'results': extracted_data | |
}) | |
return str(extracted_data) | |
def get_page_summary(self, url: str) -> str: | |
visit_result = self.browser_agent(url) | |
if "Successfully" in visit_result: | |
html = eval(self.browser_agent.current_page['content']) | |
content = eval(self.extractor_agent(html)) | |
return str({ | |
'url': url, | |
'title': content['title'], | |
'summary': ' '.join(content['text'].split()[:100]) + '...' | |
}) | |
return visit_result # Return the error message | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |