wt002's picture
upload 2 files
037cb93 verified
raw
history blame
6.52 kB
from typing import TypedDict, Annotated, Sequence
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolExecutor, ToolInvocation
from langchain.tools import DuckDuckGoSearchResults
from langchain_community.utilities import WikipediaAPIWrapper
from langchain.agents import create_tool_calling_agent
from langchain.agents import AgentExecutor
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
import operator
load_dotenv()
# Define the agent state
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
sender: str
# Initialize tools
@tool
def wikipedia_search(query: str) -> str:
"""Search Wikipedia for information."""
return WikipediaAPIWrapper().run(query)
@tool
def web_search(query: str, num_results: int = 3) -> list:
"""Search the web for current information."""
return DuckDuckGoSearchResults(num_results=num_results).run(query)
@tool
def calculate(expression: str) -> str:
"""Evaluate mathematical expressions."""
from langchain.chains import LLMMathChain
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
return LLMMathChain(llm=llm).run(expression)
class AdvancedAIAgent:
def __init__(self, model_name="gpt-4-turbo"):
# Initialize tools and LLM
self.tools = [wikipedia_search, web_search, calculate]
self.llm = ChatOpenAI(model=model_name, temperature=0.7)
# Create the agent
self.agent = self._create_agent()
self.tool_executor = ToolExecutor(self.tools)
# Build the graph workflow
self.workflow = self._build_graph()
def _create_agent(self) -> AgentExecutor:
"""Create the agent with tools and prompt"""
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful AI assistant. Use tools when needed."),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
])
agent = create_tool_calling_agent(self.llm, self.tools, prompt)
return AgentExecutor(agent=agent, tools=self.tools, verbose=True)
def _build_graph(self):
"""Build the LangGraph workflow"""
workflow = StateGraph(AgentState)
# Define nodes
workflow.add_node("agent", self._call_agent)
workflow.add_node("tools", self._call_tools)
# Define edges
workflow.set_entry_point("agent")
workflow.add_conditional_edges(
"agent",
self._should_continue,
{
"continue": "tools",
"end": END
}
)
workflow.add_edge("tools", "agent")
return workflow.compile()
def _call_agent(self, state: AgentState):
"""Execute the agent"""
response = self.agent.invoke({"messages": state["messages"]})
return {"messages": [response["output"]]}
def _call_tools(self, state: AgentState):
"""Execute tools"""
last_message = state["messages"][-1]
# Find the tool calls
tool_calls = last_message.additional_kwargs.get("tool_calls", [])
# Execute each tool
for tool_call in tool_calls:
action = ToolInvocation(
tool=tool_call["function"]["name"],
tool_input=json.loads(tool_call["function"]["arguments"]),
)
output = self.tool_executor.invoke(action)
# Create tool message
tool_message = ToolMessage(
content=str(output),
name=action.tool,
tool_call_id=tool_call["id"],
)
state["messages"].append(tool_message)
return {"messages": state["messages"]}
def _should_continue(self, state: AgentState):
"""Determine if the workflow should continue"""
last_message = state["messages"][-1]
# If no tool calls, end
if not last_message.additional_kwargs.get("tool_calls"):
return "end"
return "continue"
def __call__(self, query: str) -> dict:
"""Process a user query"""
# Initialize state
state = AgentState(messages=[HumanMessage(content=query)], sender="user")
# Execute the workflow
for output in self.workflow.stream(state):
for key, value in output.items():
if key == "messages":
for message in value:
if isinstance(message, BaseMessage):
return {
"response": message.content,
"sources": self._extract_sources(state["messages"]),
"steps": self._extract_steps(state["messages"])
}
def _extract_sources(self, messages: Sequence[BaseMessage]) -> list:
"""Extract sources from tool messages"""
return [
f"{msg.additional_kwargs.get('name', 'unknown')}: {msg.content}"
for msg in messages
if hasattr(msg, 'additional_kwargs') and 'name' in msg.additional_kwargs
]
def _extract_steps(self, messages: Sequence[BaseMessage]) -> list:
"""Extract reasoning steps"""
steps = []
for msg in messages:
if hasattr(msg, 'additional_kwargs') and 'tool_calls' in msg.additional_kwargs:
for call in msg.additional_kwargs['tool_calls']:
steps.append(f"Used {call['function']['name']}: {call['function']['arguments']}")
return steps
# Example usage
if __name__ == "__main__":
agent = AdvancedAIAgent()
queries = [
"What is the capital of France?",
"Calculate 15% of 200",
"Tell me about the latest developments in quantum computing"
]
for query in queries:
print(f"\nQuestion: {query}")
response = agent(query)
print(f"Answer: {response['response']}")
if response['sources']:
print("Sources:")
for source in response['sources']:
print(f"- {source}")
if response['steps']:
print("Steps taken:")
for step in response['steps']:
print(f"- {step}")