wt002's picture
Update app.py
b011db5 verified
raw
history blame
16.5 kB
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, OpenAIServerModel, DuckDuckGoSearchTool, VisitWebpageTool, tool, \
FinalAnswerTool, PythonInterpreterTool, SpeechToTextTool, ToolCallingAgent
import yaml
import importlib
from io import BytesIO
import tempfile
import base64
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api._errors import TranscriptsDisabled, NoTranscriptFound, VideoUnavailable
from urllib.parse import urlparse, parse_qs
import json
import whisper
import re
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
@tool
def transcribe_audio_file(file_path: str) -> str:
"""
Transcribes a local MP3 audio file using Whisper.
Args:
file_path: Full path to the .mp3 audio file.
Returns:
A JSON-formatted string containing either the transcript or an error message.
{
"success": true,
"transcript": [
{"start": 0.0, "end": 5.2, "text": "Hello and welcome"},
...
]
}
OR
{
"success": false,
"error": "Reason why transcription failed"
}
"""
try:
if not os.path.exists(file_path):
return json.dumps({"success": False, "error": "File does not exist."})
if not file_path.lower().endswith(".mp3"):
return json.dumps({"success": False, "error": "Invalid file type. Only MP3 files are supported."})
model = whisper.load_model("base") # You can use 'tiny', 'base', 'small', 'medium', or 'large'
result = model.transcribe(file_path, verbose=False, word_timestamps=False)
transcript_data = [
{
"start": segment["start"],
"end": segment["end"],
"text": segment["text"].strip()
}
for segment in result["segments"]
]
return json.dumps({"success": True, "transcript": transcript_data})
except Exception as e:
return json.dumps({"success": False, "error": str(e)})
@tool
def get_youtube_transcript(video_url: str) -> str:
"""
Retrieves the transcript from a YouTube video URL, including timestamps.
This tool fetches the English transcript for a given YouTube video. Automatically generated subtitles
are also supported. The result includes each snippet's start time, duration, and text.
Args:
video_url: The full URL of the YouTube video (e.g., https://www.youtube.com/watch?v=12345)
Returns:
A JSON-formatted string containing either the transcript with timestamps or an error message.
{
"success": true,
"transcript": [
{"start": 0.0, "duration": 1.54, "text": "Hey there"},
{"start": 1.54, "duration": 4.16, "text": "how are you"},
...
]
}
OR
{
"success": false,
"error": "Reason why the transcript could not be retrieved"
}
"""
try:
# Extract video ID from URL
parsed_url = urlparse(video_url)
query_params = parse_qs(parsed_url.query)
video_id = query_params.get("v", [None])[0]
if not video_id:
return json.dumps({"success": False, "error": "Invalid YouTube URL. Could not extract video ID."})
fetched_transcript = YouTubeTranscriptApi().fetch(video_id)
transcript_data = [
{
"start": snippet.start,
"duration": snippet.duration,
"text": snippet.text
}
for snippet in fetched_transcript
]
return json.dumps({"success": True, "transcript": transcript_data})
except VideoUnavailable:
return json.dumps({"success": False, "error": "The video is unavailable."})
except TranscriptsDisabled:
return json.dumps({"success": False, "error": "Transcripts are disabled for this video."})
except NoTranscriptFound:
return json.dumps({"success": False, "error": "No transcript found for this video."})
except Exception as e:
return json.dumps({"success": False, "error": str(e)})
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self):
model = OpenAIServerModel(api_key=os.environ.get("OPENAI_API_KEY"), model_id="gpt-4o")
self.code_agent = CodeAgent(
tools=[PythonInterpreterTool(), DuckDuckGoSearchTool(), VisitWebpageTool(), transcribe_audio_file,
get_youtube_transcript,
FinalAnswerTool()],
model=model,
max_steps=20,
name="hf_agent_course_final_assignment_solver",
prompt_templates=yaml.safe_load(
importlib.resources.files("prompts").joinpath("code_agent.yaml").read_text()
)
)
print("BasicAgent initialized.")
def __call__(self, task_id: str, question: str, file_name: str) -> str:
if file_name:
question = self.enrich_question_with_associated_file_details(task_id, question, file_name)
final_result = self.code_agent.run(question)
# Extract text after "FINAL ANSWER:" (case-insensitive, and trims whitespace)
match = re.search(r'final answer:\s*(.*)', str(final_result), re.IGNORECASE | re.DOTALL)
if match:
return match.group(1).strip()
# Fallback in case the pattern is not found
return str(final_result).strip()
def enrich_question_with_associated_file_details(self, task_id:str, question: str, file_name: str) -> str:
api_url = DEFAULT_API_URL
get_associated_files_url = f"{api_url}/files/{task_id}"
response = requests.get(get_associated_files_url, timeout=15)
response.raise_for_status()
if file_name.endswith(".mp3"):
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_file.write(response.content)
file_path = tmp_file.name
return question + "\n\nMentioned .mp3 file local path is: " + file_path
elif file_name.endswith(".py"):
file_content = response.text
return question + "\n\nBelow is mentioned Python file:\n\n```python\n" + file_content + "\n```\n"
elif file_name.endswith(".xlsx"):
xlsx_io = BytesIO(response.content)
df = pd.read_excel(xlsx_io)
file_content = df.to_csv(index=False)
return question + "\n\nBelow is mentioned excel file in CSV format:\n\n```csv\n" + file_content + "\n```\n"
elif file_name.endswith(".png"):
base64_str = base64.b64encode(response.content).decode('utf-8')
return question + "\n\nBelow is the .png image in base64 format:\n\n```base64\n" + base64_str + "\n```\n"
def enrich_question_with_associated_file_details(self, task_id:str, question: str, file_name: str) -> str:
api_url = DEFAULT_API_URL
get_associated_files_url = f"{api_url}/files/{task_id}"
response = requests.get(get_associated_files_url, timeout=15)
response.raise_for_status()
if file_name.endswith(".mp3"):
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_file.write(response.content)
file_path = tmp_file.name
return question + "\n\nMentioned .mp3 file local path is: " + file_path
elif file_name.endswith(".py"):
file_content = response.text
return question + "\n\nBelow is mentioned Python file:\n\n```python\n" + file_content + "\n```\n"
elif file_name.endswith(".xlsx"):
xlsx_io = BytesIO(response.content)
df = pd.read_excel(xlsx_io)
file_content = df.to_csv(index=False)
return question + "\n\nBelow is mentioned excel file in CSV format:\n\n```csv\n" + file_content + "\n```\n"
elif file_name.endswith(".png"):
base64_str = base64.b64encode(response.content).decode('utf-8')
return question + "\n\nBelow is the .png image in base64 format:\n\n```base64\n" + base64_str + "\n```\n"
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)