Spaces:
Running
Running
import os | |
import gradio as gr | |
import requests | |
import speech_recognition as sr | |
from smolagents import OpenAIServerModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool | |
from pathlib import Path | |
import tempfile | |
from smolagents.tools import PipelineTool, Tool | |
import pathlib | |
from typing import Union, Optional | |
import pandas as pd | |
from tabulate import tabulate # pragma: no cover β fallback path | |
import re | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from langchain.agents import initialize_agent | |
from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun | |
from langchain_community.llms import HuggingFaceHub | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
class SpeechToTextTool(PipelineTool): | |
""" | |
Transcribes an audio file to text using the OpenAI Whisper API. | |
Only local file paths are supported. | |
""" | |
default_checkpoint = "openai/whisper-1" # purely informational here | |
description = ( | |
"This tool sends an audio file to OpenAI Whisper and returns the " | |
"transcribed text." | |
) | |
name = "transcriber" | |
inputs = { | |
"audio": { | |
"type": "string", | |
"description": "Absolute or relative path to a local audio file.", | |
} | |
} | |
output_type = "string" | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# Public interface | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def __call__(self, audio: str) -> str: | |
""" | |
Convenience wrapper so the tool can be used like a regular function: | |
text = SpeechToTextTool()(path_to_audio) | |
""" | |
return self._transcribe(audio) | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# Internal helpers | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def _transcribe(audio_path: str) -> str: | |
# ----- validation ---------------------------------------------------- | |
if not isinstance(audio_path, str): | |
raise TypeError( | |
"Parameter 'audio' must be a string containing the file path." | |
) | |
path = Path(audio_path).expanduser().resolve() | |
if not path.is_file(): | |
raise FileNotFoundError(f"No such audio file: {path}") | |
# ----- API call ------------------------------------------------------ | |
with path.open("rb") as fp: | |
response = openai.audio.transcriptions.create( | |
file=fp, | |
model="whisper-1", # currently the only Whisper model | |
response_format="text" # returns plain text instead of JSON | |
) | |
# For response_format="text", `response` is already the raw transcript | |
return response | |
def transcribe_audio(audio_file_path): | |
recognizer = sr.Recognizer() | |
with sr.AudioFile(audio_file_path) as source: | |
audio_data = recognizer.record(source) | |
try: | |
text = recognizer.recognize_google(audio_data) | |
return text | |
except sr.UnknownValueError: | |
return "Could not understand audio" | |
except sr.RequestError: | |
return "Could not request results (check internet connection)" | |
class ExcelToTextTool(Tool): | |
"""Render an Excel worksheet as Markdown text.""" | |
# ------------------------------------------------------------------ | |
# Required smolβagents metadata | |
# ------------------------------------------------------------------ | |
name = "excel_to_text" | |
description = ( | |
"Read an Excel file and return a Markdown table of the requested sheet. " | |
"Accepts either the sheet name or the zero-based index." | |
) | |
inputs = { | |
"excel_path": { | |
"type": "string", | |
"description": "Path to the Excel file (.xlsx / .xls).", | |
}, | |
"sheet_name": { | |
"type": "string", | |
"description": ( | |
"Worksheet name or zeroβbased index *as a string* (optional; default first sheet)." | |
), | |
"nullable": True, | |
}, | |
} | |
output_type = "string" | |
# ------------------------------------------------------------------ | |
# Core logic | |
# ------------------------------------------------------------------ | |
def forward( | |
self, | |
excel_path: str, | |
sheet_name: Optional[str] = None, | |
) -> str: | |
"""Load *excel_path* and return the sheet as a Markdown table.""" | |
path = pathlib.Path(excel_path).expanduser().resolve() | |
if not path.exists(): | |
return f"Error: Excel file not found at {path}" | |
try: | |
# Interpret sheet identifier ----------------------------------- | |
sheet: Union[str, int] | |
if sheet_name is None or sheet_name == "": | |
sheet = 0 # first sheet | |
else: | |
# If the user passed a numeric string (e.g. "1"), cast to int | |
sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name | |
# Load worksheet ---------------------------------------------- | |
df = pd.read_excel(path, sheet_name=sheet) | |
# Render to Markdown; fall back to tabulate if needed --------- | |
if hasattr(pd.DataFrame, "to_markdown"): | |
return df.to_markdown(index=False) | |
from tabulate import tabulate # pragma: no cover β fallback path | |
return tabulate(df, headers="keys", tablefmt="github", showindex=False) | |
except Exception as exc: # broad catch keeps the agent chatβfriendly | |
return f"Error reading Excel file: {exc}" | |
def download_file_if_any(base_api_url: str, task_id: str) -> str | None: | |
""" | |
Try GET /files/{task_id}. | |
β’ On HTTP 200 β save to a temp dir and return local path. | |
β’ On 404 β return None. | |
β’ On other errors β raise so caller can log / handle. | |
""" | |
url = f"{base_api_url}/files/{task_id}" | |
try: | |
resp = requests.get(url, timeout=30) | |
if resp.status_code == 404: | |
return None # no file | |
resp.raise_for_status() # raise on 4xx/5xx β 404 | |
except requests.exceptions.HTTPError as e: | |
# propagate non-404 errors (403, 500, β¦) | |
raise e | |
# βΈ Save bytes to a named file inside the system temp dir | |
# Try to keep original extension from Content-Disposition if present. | |
cdisp = resp.headers.get("content-disposition", "") | |
filename = task_id # default base name | |
if "filename=" in cdisp: | |
m = re.search(r'filename="([^"]+)"', cdisp) | |
if m: | |
filename = m.group(1) # keep provided name | |
tmp_dir = Path(tempfile.gettempdir()) / "gaia_files" | |
tmp_dir.mkdir(exist_ok=True) | |
file_path = tmp_dir / filename | |
with open(file_path, "wb") as f: | |
f.write(resp.content) | |
return str(file_path) | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
class BasicAgent: | |
def __init__(self): | |
# Initialize LLM (requires HuggingFace API token) | |
llm = HuggingFaceHub( | |
repo_id="meta-llama/Meta-Llama-3-8B-Instruct" #, | |
# huggingfacehub_api_token="your_token" | |
) | |
print("BasicAgent initialized.") | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
fixed_answer = self.agent.run(question) | |
print(f"Agent returning answer: {fixed_answer}") | |
return fixed_answer | |
# Initialize tools | |
tools = [ | |
DuckDuckGoSearchRun(), | |
WikipediaQueryRun() | |
# Would need custom implementations for other tools | |
] | |
self.agent = initialize_agent( | |
tools=tools, | |
llm=llm, | |
agent="zero-shot-react-description", | |
verbose=True | |
) | |
def run(self, prompt): | |
return self.agent.run(prompt) | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"β SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"β SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |