File size: 11,963 Bytes
5c3b4a6
876b12f
a2624a3
 
 
876b12f
 
 
 
 
 
 
 
5c3b4a6
 
 
a2624a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
876b12f
5c3b4a6
 
 
 
 
 
 
 
 
 
 
a2624a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c3b4a6
 
876b12f
 
 
 
1360e33
 
 
 
5c3b4a6
1360e33
 
 
 
876b12f
1360e33
 
 
 
 
 
 
876b12f
1360e33
 
 
876b12f
1360e33
 
 
 
 
 
 
 
 
 
876b12f
1360e33
 
 
 
 
 
 
 
876b12f
a2624a3
876b12f
a2624a3
 
 
 
 
 
876b12f
 
a2624a3
 
 
 
 
 
876b12f
 
a2624a3
 
 
 
 
 
876b12f
a2624a3
 
 
 
 
 
 
876b12f
 
a2624a3
876b12f
a2624a3
 
876b12f
 
 
a2624a3
876b12f
 
 
 
a2624a3
 
 
 
 
 
876b12f
 
 
 
 
 
 
 
 
 
a2624a3
876b12f
5c3b4a6
876b12f
55cdb25
a2624a3
55cdb25
 
 
a2624a3
 
55cdb25
 
 
a2624a3
 
 
55cdb25
 
 
a2624a3
55cdb25
 
876b12f
 
 
 
 
 
 
 
 
 
 
 
 
5c3b4a6
876b12f
55cdb25
876b12f
55cdb25
 
876b12f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from typing import Dict, Any, Literal
import logging
from transformers import pipeline
import torch
import numpy as np

from .headline_analyzer import HeadlineAnalyzer
from .sentiment_analyzer import SentimentAnalyzer
from .bias_analyzer import BiasAnalyzer
from .evidence_analyzer import EvidenceAnalyzer

logger = logging.getLogger(__name__)

# Define analysis mode type
AnalysisMode = Literal['ai', 'traditional']

class ModelRegistry:
    """Singleton class to manage shared model pipelines."""
    _instance = None
    _initialized = False
    
    def __new__(cls):
        if cls._instance is None:
            cls._instance = super(ModelRegistry, cls).__new__(cls)
        return cls._instance
    
    def __init__(self):
        if not self._initialized:
            try:
                # Use GPU if available
                self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                logger.info(f"Using device: {self.device}")
                
                # Initialize shared models with larger batch sizes
                self.zero_shot = pipeline(
                    "zero-shot-classification",
                    model="facebook/bart-large-mnli",
                    device=self.device,
                    batch_size=8
                )
                
                self.sentiment = pipeline(
                    "text-classification",
                    model="SamLowe/roberta-base-go_emotions",
                    device=self.device,
                    batch_size=16
                )
                
                self.nli = pipeline(
                    "text-classification",
                    model="roberta-large-mnli",
                    device=self.device,
                    batch_size=16
                )
                
                # Add toxicity pipeline
                self.toxicity = pipeline(
                    "text-classification",
                    model="unitary/toxic-bert",
                    device=self.device,
                    batch_size=16
                )
                
                logger.info("Successfully initialized shared model pipelines")
                self._initialized = True
                
            except Exception as e:
                logger.error(f"Failed to initialize shared models: {str(e)}")
                self._initialized = False
    
    @property
    def is_available(self):
        return self._initialized

class MediaScorer:
    def __init__(self, use_ai: bool = True):
        """
        Initialize the MediaScorer with required analyzers.
        
        Args:
            use_ai: Boolean indicating whether to use AI-powered analysis (True) or traditional analysis (False)
        """
        self.use_ai = use_ai
        self.analysis_mode: AnalysisMode = 'ai' if use_ai else 'traditional'
        logger.info(f"Initializing MediaScorer with {self.analysis_mode} analysis")
        
        # Initialize shared model registry if using AI
        if use_ai:
            self.model_registry = ModelRegistry()
            if not self.model_registry.is_available:
                logger.warning("Shared models not available, falling back to traditional analysis")
                self.use_ai = False
                self.analysis_mode = 'traditional'
        
        # Initialize analyzers with analysis mode preference and shared models
        self.headline_analyzer = HeadlineAnalyzer(
            use_ai=self.use_ai,
            model_registry=self.model_registry if self.use_ai else None
        )
        self.sentiment_analyzer = SentimentAnalyzer(
            use_ai=self.use_ai,
            model_registry=self.model_registry if self.use_ai else None
        )
        self.bias_analyzer = BiasAnalyzer(
            use_ai=self.use_ai,
            model_registry=self.model_registry if self.use_ai else None
        )
        self.evidence_analyzer = EvidenceAnalyzer(
            use_ai=self.use_ai,
            model_registry=self.model_registry if self.use_ai else None
        )
        
        logger.info(f"All analyzers initialized in {self.analysis_mode} mode")

    def calculate_media_score(self, headline: str, content: str) -> Dict[str, Any]:
        """Calculate final media credibility score."""
        try:
            logger.info("\n" + "="*50)
            logger.info("MEDIA SCORE CALCULATION STARTED")
            logger.info("="*50)
            logger.info(f"Analysis Mode: {self.analysis_mode}")
            
            # Headline Analysis
            logger.info("\n" + "-"*30)
            logger.info("HEADLINE ANALYSIS")
            logger.info("-"*30)
            headline_analysis = self.headline_analyzer.analyze(headline, content)
            logger.info(f"Headline Score: {headline_analysis.get('headline_vs_content_score', 0)}")
            logger.info(f"Flagged Phrases: {headline_analysis.get('flagged_phrases', [])}")
            
            # Sentiment Analysis
            logger.info("\n" + "-"*30)
            logger.info("SENTIMENT ANALYSIS")
            logger.info("-"*30)
            sentiment_analysis = self.sentiment_analyzer.analyze(content)
            logger.info(f"Sentiment: {sentiment_analysis.get('sentiment', 'Unknown')}")
            logger.info(f"Manipulation Score: {sentiment_analysis.get('manipulation_score', 0)}")
            logger.info(f"Flagged Phrases: {sentiment_analysis.get('flagged_phrases', [])}")
            
            # Bias Analysis
            logger.info("\n" + "-"*30)
            logger.info("BIAS ANALYSIS")
            logger.info("-"*30)
            bias_analysis = self.bias_analyzer.analyze(content)
            logger.info(f"""Bias Results:
                Label: {bias_analysis.get('bias', 'Unknown')}
                Score: {bias_analysis.get('bias_score', 0)}
                Percentage: {bias_analysis.get('bias_percentage', 0)}%
                Flagged Phrases: {bias_analysis.get('flagged_phrases', [])}
            """)
            
            # Evidence Analysis
            logger.info("\n" + "-"*30)
            logger.info("EVIDENCE ANALYSIS")
            logger.info("-"*30)
            evidence_analysis = self.evidence_analyzer.analyze(content)
            logger.info(f"Evidence Score: {evidence_analysis.get('evidence_based_score', 0)}")
            logger.info(f"Flagged Phrases: {evidence_analysis.get('flagged_phrases', [])}")
            
            # Calculate component scores with NaN handling
            # For headline: 20% contradiction = 20% score (don't invert)
            headline_score = headline_analysis.get("headline_vs_content_score", 0)
            if isinstance(headline_score, (int, float)) and not np.isnan(headline_score):
                headline_score = headline_score / 100
            else:
                headline_score = 0.5  # Default to neutral if score is invalid
                logger.warning("Invalid headline score, using default value of 0.5")
            
            # For manipulation: 0% = good (use directly), 100% = bad
            manipulation_score = sentiment_analysis.get("manipulation_score", 0)
            if isinstance(manipulation_score, (int, float)) and not np.isnan(manipulation_score):
                manipulation_score = (100 - manipulation_score) / 100
            else:
                manipulation_score = 0.5
                logger.warning("Invalid manipulation score, using default value of 0.5")
            
            # For bias: 0% = good (use directly), 100% = bad
            bias_percentage = bias_analysis.get("bias_percentage", 0)
            if isinstance(bias_percentage, (int, float)) and not np.isnan(bias_percentage):
                bias_score = (100 - bias_percentage) / 100
            else:
                bias_score = 0.5
                logger.warning("Invalid bias score, using default value of 0.5")
            
            # For evidence: higher is better
            evidence_score = evidence_analysis.get("evidence_based_score", 0)
            if isinstance(evidence_score, (int, float)) and not np.isnan(evidence_score):
                evidence_score = evidence_score / 100
            else:
                evidence_score = 0.5
                logger.warning("Invalid evidence score, using default value of 0.5")
            
            logger.info(f"""Component Scores:
                Headline: {headline_score * 100:.1f}% (from {headline_analysis.get("headline_vs_content_score", 0)})
                Evidence: {evidence_score * 100:.1f}%
                Manipulation: {manipulation_score * 100:.1f}% (100 - {sentiment_analysis.get("manipulation_score", 0)}%)
                Bias: {bias_score * 100:.1f}% (100 - {bias_analysis.get("bias_percentage", 0)}%)
            """)
            
            # Calculate final score
            final_score = float((
                (headline_score * 0.25) +
                (manipulation_score * 0.25) +
                (bias_score * 0.25) +
                (evidence_score * 0.25)
            ) * 100)
            
            # Ensure final score is valid
            if np.isnan(final_score) or not np.isfinite(final_score):
                final_score = 50.0  # Default to neutral
                logger.warning("Invalid final score calculated, using default value of 50.0")
            
            # Determine rating
            if final_score >= 80:
                rating = "Trustworthy"
            elif final_score >= 50:
                rating = "Bias Present"
            else:
                rating = "Misleading"
            
            result = {
                "media_unmasked_score": round(float(final_score), 1),
                "rating": rating,
                "analysis_mode": self.analysis_mode,
                "details": {
                    "headline_analysis": {
                        "headline_vs_content_score": float(headline_analysis.get("headline_vs_content_score", 0)),
                        "flagged_phrases": headline_analysis.get("flagged_phrases", [])
                    },
                    "sentiment_analysis": {
                        "sentiment": str(sentiment_analysis.get("sentiment", "Neutral")),
                        "manipulation_score": float(sentiment_analysis.get("manipulation_score", 0)),
                        "flagged_phrases": sentiment_analysis.get("flagged_phrases", [])
                    },
                    "bias_analysis": {
                        "bias": str(bias_analysis.get("bias", "Neutral")),
                        "bias_score": float(bias_analysis.get("bias_score", 0)),
                        "bias_percentage": float(bias_analysis.get("bias_percentage", 0)),
                        "flagged_phrases": bias_analysis.get("flagged_phrases", [])
                    },
                    "evidence_analysis": {
                        "evidence_based_score": float(evidence_analysis.get("evidence_based_score", 0)),
                        "flagged_phrases": evidence_analysis.get("flagged_phrases", [])
                    }
                }
            }
            
            logger.info("\n=== Final Score Result ===")
            logger.info(f"Result: {result}")
            
            return result
            
        except Exception as e:
            logger.error(f"Error calculating media score: {str(e)}")
            return {
                "media_unmasked_score": 0,
                "rating": "Error",
                "analysis_mode": self.analysis_mode,
                "details": {
                    "headline_analysis": {"headline_vs_content_score": 0, "flagged_phrases": []},
                    "sentiment_analysis": {"sentiment": "Error", "manipulation_score": 0, "flagged_phrases": []},
                    "bias_analysis": {"bias": "Error", "bias_score": 0.0, "bias_percentage": 0, "flagged_phrases": []},
                    "evidence_analysis": {"evidence_based_score": 0, "flagged_phrases": []}
                }
            }