wooj0216 commited on
Commit
0a911cc
·
1 Parent(s): 581860b
app.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ from PIL import Image
4
+ import torch
5
+ import numpy as np
6
+
7
+ from transformers import AutoImageProcessor, AutoProcessor, AutoModel, CLIPVisionModel
8
+ from detection import detect_image, detect_video
9
+ from model import LinearClassifier
10
+
11
+
12
+ def load_model(detection_type):
13
+
14
+ device = torch.device("cpu")
15
+
16
+ processor = AutoProcessor.from_pretrained("openai/clip-vit-large-patch14")
17
+ clip_model = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14", output_attentions=True)
18
+
19
+ model_path = f"pretrained_models/{detection_type}/clip_weights.pth"
20
+ checkpoint = torch.load(model_path, map_location="cpu")
21
+ input_dim = checkpoint["linear.weight"].shape[1]
22
+
23
+ detection_model = LinearClassifier(input_dim)
24
+ detection_model.load_state_dict(checkpoint)
25
+ detection_model = detection_model.to(device)
26
+
27
+ return processor, clip_model, detection_model
28
+
29
+ def process_image(image, detection_type):
30
+ processor, clip_model, detection_model = load_model(detection_type)
31
+
32
+ results = detect_image(image, processor, clip_model, detection_model)
33
+
34
+ pred_score = results["pred_score"]
35
+ attn_map = results["attn_map"]
36
+
37
+ return pred_score, attn_map
38
+
39
+ def process_video(video, detection_type):
40
+ processor, clip_model, detection_model = load_model(detection_type)
41
+
42
+ cap = cv2.VideoCapture(video)
43
+ frames = []
44
+ while True:
45
+ ret, frame = cap.read()
46
+ if not ret:
47
+ break
48
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
49
+ pil_image = Image.fromarray(frame)
50
+ frames.append(pil_image)
51
+ cap.release()
52
+
53
+ results = detect_video(frames, processor, clip_model, detection_model)
54
+
55
+ pred_score = results["pred_score"]
56
+ attn_map = results["attn_map"]
57
+
58
+ return pred_score, attn_map
59
+
60
+ def change_input(input_type):
61
+ if input_type == "Image":
62
+ return gr.update(visible=True), gr.update(visible=False)
63
+ elif input_type == "Video":
64
+ return gr.update(visible=False), gr.update(visible=True)
65
+ else:
66
+ return None
67
+
68
+
69
+ def process_input(input_type, model_type, image, video):
70
+ detection_type = "facial" if model_type == "Facial" else "general"
71
+
72
+ if input_type == "Image" and image is not None:
73
+ return process_image(image, detection_type)
74
+ elif input_type == "Video" and video is not None:
75
+ return process_video(video, detection_type)
76
+ else:
77
+ return None, None
78
+
79
+
80
+ with gr.Blocks() as demo:
81
+
82
+ gr.Markdown("## Deepfake Detection : Facial / General")
83
+
84
+ input_type = gr.Radio(["Image", "Video"], label="Choose Input Type", value="Image")
85
+
86
+ model_type = gr.Radio(["Facial", "General"], label="Choose Model Type", value="General")
87
+
88
+ image_input = gr.Image(type="pil", label="Upload Image", visible=True)
89
+ video_input = gr.Video(label="Upload Video", visible=False)
90
+
91
+ process_button = gr.Button("Run Model")
92
+
93
+ pred_score_output = gr.Textbox(label="Prediction Score")
94
+ attn_map_output = gr.Image(type="pil", label="Attention Map")
95
+
96
+ input_type.change(fn=change_input, inputs=[input_type], outputs=[image_input, video_input])
97
+
98
+ process_button.click(
99
+ fn=process_input,
100
+ inputs=[input_type, model_type, image_input, video_input],
101
+ outputs=[pred_score_output, attn_map_output]
102
+ )
103
+
104
+ if __name__ == "__main__":
105
+ demo.launch()
detection.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import cv2
4
+ import matplotlib.pyplot as plt
5
+ from PIL import Image
6
+
7
+
8
+ def vis_attn(image, patch_attention_map, alpha=0.5, vis_option="none"):
9
+
10
+ image = np.array(image)
11
+ H, W, _ = image.shape
12
+
13
+ seq_len = patch_attention_map.shape[0]
14
+ grid_size = int(seq_len ** 0.5)
15
+
16
+ patch_attention_map = patch_attention_map.reshape(grid_size, grid_size)
17
+ patch_attention_map = cv2.resize(patch_attention_map.cpu().detach().numpy(), (W, H), interpolation=cv2.INTER_CUBIC)
18
+
19
+ patch_attention_map = (patch_attention_map - patch_attention_map.min()) / (patch_attention_map.max() - patch_attention_map.min())
20
+ patch_attention_map = np.uint8(255 * patch_attention_map)
21
+
22
+ heatmap = cv2.applyColorMap(patch_attention_map, cv2.COLORMAP_JET)
23
+
24
+ blended_image = cv2.addWeighted(image, 1 - alpha, heatmap, alpha, 0)
25
+ blended_image = cv2.cvtColor(blended_image, cv2.COLOR_RGB2BGR)
26
+ blended_image = Image.fromarray(blended_image)
27
+
28
+ return blended_image
29
+
30
+
31
+ def detect_image(image, processor, clip_model, detection_model):
32
+
33
+ inputs = processor(images=image, return_tensors="pt")
34
+ with torch.no_grad():
35
+ outputs = clip_model(**inputs)
36
+
37
+ last_hidden_states = outputs.last_hidden_state[:, 0, :]
38
+
39
+ pred_score = float(detection_model(last_hidden_states)[0][0].cpu().detach().numpy())
40
+ assert 0 <= pred_score <= 1
41
+
42
+ for layer_idx in range(len(outputs.attentions)):
43
+ attn_map = outputs.attentions[layer_idx]
44
+ if layer_idx == 0:
45
+ last_layer_attn = attn_map
46
+ else:
47
+ if layer_idx < 6:
48
+ last_layer_attn += attn_map
49
+
50
+ head_mean_attn = last_layer_attn.mean(dim=1)[0]
51
+ cls_attention_map = head_mean_attn[0, 1:]
52
+
53
+ blended_image = vis_attn(image, cls_attention_map)
54
+
55
+ results = {
56
+ "pred_score": pred_score,
57
+ "attn_map": blended_image,
58
+ }
59
+
60
+ return results
61
+
62
+ def detect_video(frames, processor, clip_model, detection_model):
63
+ image = frames[0]
64
+
65
+ inputs = processor(images=image, return_tensors="pt")
66
+ with torch.no_grad():
67
+ outputs = clip_model(**inputs)
68
+
69
+ last_hidden_states = outputs.last_hidden_state[:, 0, :]
70
+
71
+ pred_score = float(detection_model(last_hidden_states)[0][0].cpu().detach().numpy())
72
+ assert 0 <= pred_score <= 1
73
+
74
+ attention_maps = outputs.attentions[-1].cpu().detach().numpy()
75
+ cls_attention_map = attention_maps[:, :, 0, :]
76
+ cls_attention_map = cls_attention_map.mean(axis=0)
77
+
78
+ blended_image = vis_attn(image, cls_attention_map)
79
+
80
+ results = {
81
+ "pred_score": pred_score,
82
+ "attn_map": blended_image,
83
+ }
84
+
85
+ return results
model.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ class LinearClassifier(torch.nn.Module):
4
+ def __init__(self, input_dim):
5
+ super(LinearClassifier, self).__init__()
6
+ self.linear = torch.nn.Linear(input_dim, 1)
7
+ self.sigmoid = torch.nn.Sigmoid()
8
+
9
+ def forward(self, x):
10
+ x = self.linear(x)
11
+ x = self.sigmoid(x)
12
+ return x
pretrained_models/facial/clip_weights.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59d99962ba4c7697416755ec815dc355d9694f957e4a76806e891a669bb33c5b
3
+ size 5686
pretrained_models/facial/dino_weights.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bdec7ff5d97ba4101085352756a546c15829d9e5910934e66fd7cc13eb5458f
3
+ size 5686
pretrained_models/facial/mobileclip_weights.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e94c2912a932b906dc0b2cd062b1c591948656627e48ce187ab6a3dd508a8a4
3
+ size 3674
pretrained_models/general/clip_weights.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:189df51aab3791bea65305e3c2807341fea7bec4cb2019cc8e58d6b217c59deb
3
+ size 5686
pretrained_models/general/dino_weights.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43059530466fce466a0e242a1523936a9bb2f60782915ad42837f974dbbcaad1
3
+ size 5674
pretrained_models/general/mobileclip_weights.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c09f581e3fb36c74444b74f172f8ae5a601e53071b61f855f626ac37fd687875
3
+ size 3674