Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
def preprocess_arabic_text(text):
|
4 |
+
# Remove diacritics
|
5 |
+
text = re.sub(r'[\u064B-\u0652]', '', text)
|
6 |
+
# Remove punctuation and non-Arabic characters
|
7 |
+
text = re.sub(r'[^\u0600-\u06FF\s]', '', text)
|
8 |
+
# Normalize Arabic letters
|
9 |
+
text = re.sub(r'\u0629', '\u0647', text) # Replace Teh Marbuta with Heh
|
10 |
+
text = re.sub(r'\u064A', '\u0649', text) # Replace Yeh with Alef Maqsura
|
11 |
+
|
12 |
+
# Remove diacritics (optional, depending on use case)
|
13 |
+
text = re.sub(r'[\u064B-\u065F]', '', text)
|
14 |
+
|
15 |
+
# Normalize elongated letters (e.g., "جدااا" -> "جدا")
|
16 |
+
text = re.sub(r'(.)\1{2,}', r'\1\1', text)
|
17 |
+
|
18 |
+
# Remove non-Arabic characters (e.g., English words, numbers, special symbols)
|
19 |
+
text = re.sub(r'[^\u0600-\u06FF\s]', '', text)
|
20 |
+
|
21 |
+
# Normalize whitespace
|
22 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
23 |
+
|
24 |
+
return text
|
25 |
+
|
26 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
27 |
+
import torch
|
28 |
+
|
29 |
+
# Load the tokenizer and model
|
30 |
+
model_name = 'aubmindlab/bert-base-arabertv02'
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
|
33 |
+
|
34 |
+
def analyze_sentiment(text):
|
35 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = model(**inputs)
|
38 |
+
logits = outputs.logits
|
39 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
40 |
+
sentiment_map = {0: 'Negative', 1: 'Neutral', 2: 'Positive'}
|
41 |
+
return sentiment_map[predicted_class]
|
42 |
+
|
43 |
+
import gradio as gr
|
44 |
+
|
45 |
+
def process_text_and_analyze_sentiment(text):
|
46 |
+
preprocessed_text = preprocess_arabic_text(text)
|
47 |
+
sentiment = analyze_sentiment(preprocessed_text)
|
48 |
+
return preprocessed_text, sentiment
|
49 |
+
|
50 |
+
# Create the Gradio interface
|
51 |
+
iface = gr.Interface(
|
52 |
+
fn=process_text_and_analyze_sentiment,
|
53 |
+
inputs=gr.Textbox(label="Enter Arabic Text"),
|
54 |
+
outputs=[
|
55 |
+
gr.Textbox(label="Preprocessed Text"),
|
56 |
+
gr.Textbox(label="Sentiment")
|
57 |
+
],
|
58 |
+
title="Arabic Text Analysis",
|
59 |
+
description="This application preprocesses Arabic text using regex and analyzes sentiment using a pre-trained model."
|
60 |
+
)
|
61 |
+
|
62 |
+
# Launch the interface
|
63 |
+
if __name__ == "__main__":
|
64 |
+
iface.launch(share=True)
|
65 |
+
|