Spaces:
Sleeping
Sleeping
import re | |
def preprocess_arabic_text(text): | |
# Remove diacritics | |
text = re.sub(r'[\u064B-\u0652]', '', text) | |
# Remove punctuation and non-Arabic characters | |
text = re.sub(r'[^\u0600-\u06FF\s]', '', text) | |
# Normalize Arabic letters | |
text = re.sub(r'\u0629', '\u0647', text) # Replace Teh Marbuta with Heh | |
text = re.sub(r'\u064A', '\u0649', text) # Replace Yeh with Alef Maqsura | |
# Remove diacritics (optional, depending on use case) | |
text = re.sub(r'[\u064B-\u065F]', '', text) | |
# Normalize elongated letters (e.g., "جدااا" -> "جدا") | |
text = re.sub(r'(.)\1{2,}', r'\1\1', text) | |
# Remove non-Arabic characters (e.g., English words, numbers, special symbols) | |
text = re.sub(r'[^\u0600-\u06FF\s]', '', text) | |
# Normalize whitespace | |
text = re.sub(r'\s+', ' ', text).strip() | |
return text | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Load the tokenizer and model | |
# model_name = 'aubmindlab/bert-base-arabertv02' | |
model_name = 'aubmindlab/bert-base-arabertv02-twitter' | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3) | |
def analyze_sentiment(text): | |
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=1).item() | |
sentiment_map = {0: 'Negative', 1: 'Neutral', 2: 'Positive'} | |
return sentiment_map[predicted_class] | |
import gradio as gr | |
def process_text_and_analyze_sentiment(text): | |
preprocessed_text = preprocess_arabic_text(text) | |
sentiment = analyze_sentiment(preprocessed_text) | |
return preprocessed_text, sentiment | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=process_text_and_analyze_sentiment, | |
inputs=gr.Textbox(label="Enter Arabic Text"), | |
outputs=[ | |
gr.Textbox(label="Preprocessed Text"), | |
gr.Textbox(label="Sentiment") | |
], | |
title="Arabic Text Analysis", | |
description="This application preprocesses Arabic text using regex and analyzes sentiment using a pre-trained model." | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch(share=True) | |