bi-encoder / app.py
wilwork's picture
Update app.py
a3401dd verified
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F
# Load embedding model and tokenizer
model_name = "Supabase/gte-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
model.eval()
def get_embedding(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
output = model(**inputs)
# Mean pooling over token embeddings
embeddings = output.last_hidden_state # Shape: (batch_size, seq_len, hidden_dim)
attention_mask = inputs["attention_mask"].unsqueeze(-1) # Shape: (batch_size, seq_len, 1)
# Apply mean pooling: Sum(token_embeddings * mask) / Sum(mask)
pooled_embedding = (embeddings * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
# Normalize embedding
return F.normalize(pooled_embedding, p=2, dim=1).squeeze()
def get_similarity_and_excerpt(query, paragraph1, paragraph2, paragraph3, threshold_weight):
paragraphs = [p for p in [paragraph1, paragraph2, paragraph3] if p.strip()]
if not query.strip() or not paragraphs:
return "Please provide both a query and at least one document paragraph."
query_embedding = get_embedding(query)
ranked_paragraphs = []
for paragraph in paragraphs:
para_embedding = get_embedding(paragraph)
similarity = F.cosine_similarity(query_embedding, para_embedding, dim=0).item()
# Highlight words using threshold
tokens = tokenizer.tokenize(paragraph)
threshold = max(0.02, threshold_weight)
highlighted_text = " ".join(f"<b>{token}</b>" if similarity > threshold else token for token in tokens)
highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split())
ranked_paragraphs.append({"similarity": similarity, "highlighted_text": highlighted_text})
ranked_paragraphs.sort(key=lambda x: x["similarity"], reverse=True)
output_html = "<table border='1' style='width:100%; border-collapse: collapse;'>"
output_html += "<tr><th>Cosine Similarity</th><th>Highlighted Paragraph</th></tr>"
for item in ranked_paragraphs:
output_html += f"<tr><td>{round(item['similarity'], 4)}</td><td>{item['highlighted_text']}</td></tr>"
output_html += "</table>"
return output_html
interface = gr.Interface(
fn=get_similarity_and_excerpt,
inputs=[
gr.Textbox(label="Query", placeholder="Enter your search query..."),
gr.Textbox(label="Document Paragraph 1", placeholder="Enter a paragraph to match...", lines=4),
gr.Textbox(label="Document Paragraph 2 (optional)", placeholder="Enter another paragraph...", lines=4),
gr.Textbox(label="Document Paragraph 3 (optional)", placeholder="Enter another paragraph...", lines=4),
gr.Slider(minimum=0.02, maximum=0.5, value=0.1, step=0.01, label="Similarity Threshold")
],
outputs=[gr.HTML(label="Ranked Paragraphs")],
title="Embedding-Based Similarity Highlighting",
description="Uses cosine similarity with Supabase/gte-small embeddings to rank paragraphs and highlight relevant words.",
allow_flagging="never",
live=True
)
if __name__ == "__main__":
interface.launch()