Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModel, AutoTokenizer | |
import torch | |
import torch.nn.functional as F | |
# Load embedding model and tokenizer | |
model_name = "Supabase/gte-small" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModel.from_pretrained(model_name) | |
model.eval() | |
def get_embedding(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
output = model(**inputs) | |
# Mean pooling over token embeddings | |
embeddings = output.last_hidden_state # Shape: (batch_size, seq_len, hidden_dim) | |
attention_mask = inputs["attention_mask"].unsqueeze(-1) # Shape: (batch_size, seq_len, 1) | |
# Apply mean pooling: Sum(token_embeddings * mask) / Sum(mask) | |
pooled_embedding = (embeddings * attention_mask).sum(dim=1) / attention_mask.sum(dim=1) | |
# Normalize embedding | |
return F.normalize(pooled_embedding, p=2, dim=1).squeeze() | |
def get_similarity_and_excerpt(query, paragraph1, paragraph2, paragraph3, threshold_weight): | |
paragraphs = [p for p in [paragraph1, paragraph2, paragraph3] if p.strip()] | |
if not query.strip() or not paragraphs: | |
return "Please provide both a query and at least one document paragraph." | |
query_embedding = get_embedding(query) | |
ranked_paragraphs = [] | |
for paragraph in paragraphs: | |
para_embedding = get_embedding(paragraph) | |
similarity = F.cosine_similarity(query_embedding, para_embedding, dim=0).item() | |
# Highlight words using threshold | |
tokens = tokenizer.tokenize(paragraph) | |
threshold = max(0.02, threshold_weight) | |
highlighted_text = " ".join(f"<b>{token}</b>" if similarity > threshold else token for token in tokens) | |
highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split()) | |
ranked_paragraphs.append({"similarity": similarity, "highlighted_text": highlighted_text}) | |
ranked_paragraphs.sort(key=lambda x: x["similarity"], reverse=True) | |
output_html = "<table border='1' style='width:100%; border-collapse: collapse;'>" | |
output_html += "<tr><th>Cosine Similarity</th><th>Highlighted Paragraph</th></tr>" | |
for item in ranked_paragraphs: | |
output_html += f"<tr><td>{round(item['similarity'], 4)}</td><td>{item['highlighted_text']}</td></tr>" | |
output_html += "</table>" | |
return output_html | |
interface = gr.Interface( | |
fn=get_similarity_and_excerpt, | |
inputs=[ | |
gr.Textbox(label="Query", placeholder="Enter your search query..."), | |
gr.Textbox(label="Document Paragraph 1", placeholder="Enter a paragraph to match...", lines=4), | |
gr.Textbox(label="Document Paragraph 2 (optional)", placeholder="Enter another paragraph...", lines=4), | |
gr.Textbox(label="Document Paragraph 3 (optional)", placeholder="Enter another paragraph...", lines=4), | |
gr.Slider(minimum=0.02, maximum=0.5, value=0.1, step=0.01, label="Similarity Threshold") | |
], | |
outputs=[gr.HTML(label="Ranked Paragraphs")], | |
title="Embedding-Based Similarity Highlighting", | |
description="Uses cosine similarity with Supabase/gte-small embeddings to rank paragraphs and highlight relevant words.", | |
allow_flagging="never", | |
live=True | |
) | |
if __name__ == "__main__": | |
interface.launch() | |