import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load model and tokenizer model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) model.eval() # Set the model to evaluation mode # Threshold for attention relevance THRESHOLD = 0.02 # Adjust as needed based on observations # Function to get relevance score and relevant excerpt with bolded tokens def get_relevance_score_and_excerpt(query, paragraph): if not query.strip() or not paragraph.strip(): return "Please provide both a query and a document paragraph.", "" # Tokenize the input inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): output = model(**inputs, output_attentions=True) # Get attention scores # Extract logits and calculate relevance score logit = output.logits.squeeze().item() relevance_score = torch.sigmoid(torch.tensor(logit)).item() # Extract attention scores (last layer) attention = output.attentions[-1] # Shape: (batch_size, num_heads, seq_len, seq_len) # Average across heads and batch dimension attention_scores = attention.mean(dim=1).mean(dim=0) # Shape: (seq_len, seq_len) # Tokenize query and paragraph separately query_tokens = tokenizer.tokenize(query) paragraph_tokens = tokenizer.tokenize(paragraph) query_len = len(query_tokens) + 2 # +2 for [CLS] and first [SEP] para_start_idx = query_len para_end_idx = len(inputs["input_ids"][0]) - 1 # Ignore final [SEP] token # Handle potential indexing issues if para_end_idx <= para_start_idx: return round(relevance_score, 4), "No relevant tokens extracted." # Extract paragraph attention scores para_attention_scores = attention_scores[para_start_idx:para_end_idx, para_start_idx:para_end_idx].mean(dim=0) if para_attention_scores.numel() == 0: return round(relevance_score, 4), "No relevant tokens extracted." # Filter tokens based on threshold and preserve order relevant_indices = (para_attention_scores > THRESHOLD).nonzero(as_tuple=True)[0].tolist() # Reconstruct paragraph with bolded relevant tokens highlighted_text = "" for idx, token in enumerate(paragraph_tokens): if idx in relevant_indices: highlighted_text += f"**{token}** " else: highlighted_text += f"{token} " # Convert tokens to readable format (handling special characters) highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split()) return round(relevance_score, 4), highlighted_text # Define Gradio interface interface = gr.Interface( fn=get_relevance_score_and_excerpt, inputs=[ gr.Textbox(label="Query", placeholder="Enter your search query..."), gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...") ], outputs=[ gr.Textbox(label="Relevance Score"), gr.HTML(label="Highlighted Document Paragraph") ], title="Cross-Encoder Relevance Scoring with Highlighted Excerpt", description="Enter a query and a document paragraph to get a relevance score and see relevant tokens in bold.", allow_flagging="never", live=True ) if __name__ == "__main__": interface.launch()