import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load model and tokenizer model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) model.eval() # Sigmoid-based threshold adjustment function def calculate_threshold(base_relevance, min_threshold=0.02, max_threshold=0.5, k=10): base_relevance_tensor = torch.tensor(base_relevance) # Ensure input is a tensor threshold = min_threshold + (max_threshold - min_threshold) * ( 1 / (1 + torch.exp(-k * (base_relevance_tensor - 0.5))) ) return threshold.item() # Convert tensor back to float for use in other functions # Function to compute relevance score and dynamically adjust threshold def get_relevance_score_and_excerpt(query, paragraph, threshold_weight): if not query.strip() or not paragraph.strip(): return "Please provide both a query and a document paragraph.", "" # Tokenize the input inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): output = model(**inputs, output_attentions=True) # Extract logits and calculate base relevance score logit = output.logits.squeeze().item() base_relevance_score = torch.sigmoid(torch.tensor(logit)).item() # Compute dynamic threshold using sigmoid-based adjustment dynamic_threshold = calculate_threshold(base_relevance_score) * threshold_weight # Extract attention scores (last layer) attention = output.attentions[-1] attention_scores = attention.mean(dim=1).mean(dim=0) query_tokens = tokenizer.tokenize(query) paragraph_tokens = tokenizer.tokenize(paragraph) query_len = len(query_tokens) + 2 # +2 for special tokens [CLS] and first [SEP] para_start_idx = query_len para_end_idx = len(inputs["input_ids"][0]) - 1 if para_end_idx <= para_start_idx: return round(base_relevance_score, 4), "No relevant tokens extracted." para_attention_scores = attention_scores[para_start_idx:para_end_idx, para_start_idx:para_end_idx].mean(dim=0) if para_attention_scores.numel() == 0: return round(base_relevance_score, 4), "No relevant tokens extracted." # Get indices of relevant tokens above dynamic threshold relevant_indices = (para_attention_scores > dynamic_threshold).nonzero(as_tuple=True)[0].tolist() # Reconstruct paragraph with bolded relevant tokens using HTML tags highlighted_text = "" for idx, token in enumerate(paragraph_tokens): if idx in relevant_indices: highlighted_text += f"{token} " else: highlighted_text += f"{token} " highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split()) return round(base_relevance_score, 4), highlighted_text # Define Gradio interface with a slider for threshold adjustment interface = gr.Interface( fn=get_relevance_score_and_excerpt, inputs=[ gr.Textbox(label="Query", placeholder="Enter your search query..."), gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match..."), gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Threshold Weight") ], outputs=[ gr.Textbox(label="Relevance Score"), gr.HTML(label="Highlighted Document Paragraph") ], title="Cross-Encoder Attention Highlighting", description="Adjust the attention threshold weight to control token highlighting sensitivity.", allow_flagging="never", live=True ) if __name__ == "__main__": interface.launch()