X-encoder / app.py
wilwork's picture
Update app.py
8014cd1 verified
raw
history blame
1.73 kB
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
# Load model and tokenizer
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
print("Loading model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval() # Set model to evaluation mode
print("Model and tokenizer loaded successfully.")
# Function to compute relevance score
def get_relevance_score(query, paragraph):
if not query.strip() or not paragraph.strip():
return "Please provide both a query and a document paragraph."
print(f"Received inputs -> Query: {query}, Paragraph: {paragraph}")
# Tokenize inputs
inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True)
# Perform inference without gradient tracking
with torch.no_grad():
score = model(**inputs).logits.squeeze().item()
print(f"Calculated score: {score}")
return round(score, 4)
def test_function(query, paragraph):
return f"Received query: {query}, paragraph: {paragraph}"
# Define Gradio interface
interface = gr.Interface(
fn=get_relevance_score,
inputs=[
gr.Textbox(label="Query", placeholder="Enter your search query..."),
gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...")
],
outputs=gr.Textbox(label="Relevance Score"),
title="Cross-Encoder Relevance Scoring",
description="Enter a query and a document paragraph to get a relevance score using the MS MARCO MiniLM L-12 v2 model."
)
if __name__ == "__main__":
print("Launching Gradio app...")
interface.launch()