File size: 10,664 Bytes
8afc956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26bc3f0
d754725
4a59e33
bc0eac2
 
8afc956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e0719
5f35b54
 
 
 
 
 
 
8afc956
16dde34
5f35b54
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os

import gradio as gr
import nltk
import sentence_transformers
import torch
from duckduckgo_search import ddg
from duckduckgo_search.utils import SESSION
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredFileLoader
from langchain.embeddings import JinaEmbeddings
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.vectorstores import FAISS

from chatllm import ChatLLM
from chinese_text_splitter import ChineseTextSplitter

nltk.data.path.append('./nltk_data')

embedding_model_dict = {
    "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
    "ernie-base": "nghuyong/ernie-3.0-base-zh",
    "text2vec-base": "GanymedeNil/text2vec-base-chinese",
    #"ViT-B-32": 'ViT-B-32::laion2b-s34b-b79k'
}

llm_model_dict = {
    "ChatGLM-6B-int8": "THUDM/chatglm-6b-int8",
    "ChatGLM-6B-int4": "THUDM/chatglm-6b-int4",
    "ChatGLM-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
    #"Minimax": "Minimax"
}

DEVICE = "cuda" if torch.cuda.is_available(
) else "mps" if torch.backends.mps.is_available() else "cpu"


def search_web(query):

    SESSION.proxies = {
        "http": f"socks5h://localhost:7890",
        "https": f"socks5h://localhost:7890"
    }
    results = ddg(query)
    web_content = ''
    if results:
        for result in results:
            web_content += result['body']
    return web_content


def load_file(filepath):
    if filepath.lower().endswith(".pdf"):
        loader = UnstructuredFileLoader(filepath)
        textsplitter = ChineseTextSplitter(pdf=True)
        docs = loader.load_and_split(textsplitter)
    else:
        loader = UnstructuredFileLoader(filepath, mode="elements")
        textsplitter = ChineseTextSplitter(pdf=False)
        docs = loader.load_and_split(text_splitter=textsplitter)
    return docs


def init_knowledge_vector_store(embedding_model, filepath):
    if embedding_model == "ViT-B-32":
        jina_auth_token = os.getenv('jina_auth_token')
        embeddings = JinaEmbeddings(
            jina_auth_token=jina_auth_token,
            model_name=embedding_model_dict[embedding_model])
    else:
        embeddings = HuggingFaceEmbeddings(
            model_name=embedding_model_dict[embedding_model], )
        embeddings.client = sentence_transformers.SentenceTransformer(
            embeddings.model_name, device=DEVICE)

    docs = load_file(filepath)

    vector_store = FAISS.from_documents(docs, embeddings)
    return vector_store


def get_knowledge_based_answer(query,
                               large_language_model,
                               vector_store,
                               VECTOR_SEARCH_TOP_K,
                               web_content,
                               history_len,
                               temperature,
                               top_p,
                               chat_history=[]):
    if web_content:
        prompt_template = f"""基于以下已知信息,简洁和专业的来回答用户的问题。
                            如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
                            已知网络检索内容:{web_content}""" + """
                            已知内容:
                            {context}
                            问题:
                            {question}"""
    else:
        prompt_template = """基于以下已知信息,请简洁并专业地回答用户的问题。
            如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息"。不允许在答案中添加编造成分。另外,答案请使用中文。

            已知内容:
            {context}

            问题:
            {question}"""
    prompt = PromptTemplate(template=prompt_template,
                            input_variables=["context", "question"])
    chatLLM = ChatLLM()
    chatLLM.history = chat_history[-history_len:] if history_len > 0 else []
    if large_language_model == "Minimax":
        chatLLM.model = 'Minimax'
    else:
        chatLLM.load_model(
            model_name_or_path=llm_model_dict[large_language_model])
        chatLLM.temperature = temperature
        chatLLM.top_p = top_p

    knowledge_chain = RetrievalQA.from_llm(
        llm=chatLLM,
        retriever=vector_store.as_retriever(
            search_kwargs={"k": VECTOR_SEARCH_TOP_K}),
        prompt=prompt)
    knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
        input_variables=["page_content"], template="{page_content}")

    knowledge_chain.return_source_documents = True

    result = knowledge_chain({"query": query})
    return result


def clear_session():
    return '', None


def predict(input,
            large_language_model,
            embedding_model,
            file_obj,
            VECTOR_SEARCH_TOP_K,
            history_len,
            temperature,
            top_p,
            use_web,
            history=None):
    if history == None:
        history = []
    print(file_obj.name)
    vector_store = init_knowledge_vector_store(embedding_model, file_obj.name)
    if use_web == 'True':
        web_content = search_web(query=input)
    else:
        web_content = ''
    resp = get_knowledge_based_answer(
        query=input,
        large_language_model=large_language_model,
        vector_store=vector_store,
        VECTOR_SEARCH_TOP_K=VECTOR_SEARCH_TOP_K,
        web_content=web_content,
        chat_history=history,
        history_len=history_len,
        temperature=temperature,
        top_p=top_p,
    )
    print(resp)
    history.append((input, resp['result']))
    return '', history, history


if __name__ == "__main__":
    block = gr.Blocks()
    with block as demo:
        gr.Markdown("<script language='javascript'>document.body.classList.toggle('dark');</script><div align='center' style='display: flex;flex-direction: row;'> \
                        <div style='width:40%; flex: 1;padding: 10px;text-align: -webkit-right;'><img style='height:45px' src='https://aigpt.sphq.cn/chat/meiya_logo_white.png'></div> \
                            <div style='width:50%; margin-left: 10px; text-align: left;'><h2> Meiya GPT 美亚柏科大模型</span> </h2></div> \
                    ")
        with gr.Row():
            with gr.Column(scale=1):
                model_choose = gr.Accordion("模型选择")
                with model_choose:
                    large_language_model = gr.Dropdown(
                        list(llm_model_dict.keys()),
                        label="large language model",
                        value="ChatGLM-6B-int4")

                    embedding_model = gr.Dropdown(list(
                        embedding_model_dict.keys()),
                                                  label="Embedding model",
                                                  value="text2vec-base")

                file = gr.File(label='请上传知识库文件, 目前支持txt、docx、md格式',
                               file_types=['.txt', '.md', '.docx'])

                use_web = gr.Radio(["True", "False"],
                                   label="Web Search",
                                   value="False")
                model_argument = gr.Accordion("模型参数配置")

                with model_argument:

                    VECTOR_SEARCH_TOP_K = gr.Slider(
                        1,
                        10,
                        value=6,
                        step=1,
                        label="vector search top k",
                        interactive=True)

                    HISTORY_LEN = gr.Slider(0,
                                            3,
                                            value=0,
                                            step=1,
                                            label="history len",
                                            interactive=True)

                    temperature = gr.Slider(0,
                                            1,
                                            value=0.01,
                                            step=0.01,
                                            label="temperature",
                                            interactive=True)
                    top_p = gr.Slider(0,
                                      1,
                                      value=0.9,
                                      step=0.1,
                                      label="top_p",
                                      interactive=True)

            with gr.Column(scale=4):
                chatbot = gr.Chatbot(label='ChatLLM').style(height=600)
                message = gr.Textbox(label='请输入问题')
                state = gr.State()

                with gr.Row():
                    clear_history = gr.Button("🧹 清除历史对话")
                    send = gr.Button("🚀 发送")

                    send.click(predict,
                               inputs=[
                                   message, large_language_model,
                                   embedding_model, file, VECTOR_SEARCH_TOP_K,
                                   HISTORY_LEN, temperature, top_p, use_web,
                                   state
                               ],
                               outputs=[message, chatbot, state])
                    clear_history.click(fn=clear_session,
                                        inputs=[],
                                        outputs=[chatbot, state],
                                        queue=False)

                    message.submit(predict,
                                   inputs=[
                                       message, large_language_model,
                                       embedding_model, file,
                                       VECTOR_SEARCH_TOP_K, HISTORY_LEN,
                                       temperature, top_p, use_web, state
                                   ],
                                   outputs=[message, chatbot, state])
      
        
    def auth(username, password):
        if username == "admin" and password =="meiya":
            return True
        else:
            return False
        
    demo.queue().launch(server_name='0.0.0.0', share=False)
    demo.launch(share=True, auth=auth, debug=True, server_name='0.0.0.0', server_port=8006,auth_message="请输入用户名与密码")