File size: 34,854 Bytes
882f6e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

import copy
import inspect
from typing import Any, Dict, List, Optional, Tuple, Type, Union

import numpy as np
import torch as th
import torch.nn.functional as thf
from torch.nn import init
from torch.nn.modules.utils import _pair
from torch.nn.utils.weight_norm import remove_weight_norm, WeightNorm

fc_default_activation = th.nn.LeakyReLU(0.2, inplace=True)


def gaussian_kernel(ksize: int, std: Optional[float] = None) -> np.ndarray:
    """Generates numpy array filled in with Gaussian values.

    The function generates Gaussian kernel (values according to the Gauss distribution)
    on the grid according to the kernel size.

    Args:
        ksize (int): The kernel size, must be odd number larger than 1. Otherwise throws an exception.
        std (float): The standard deviation, could be None, in which case it will be calculated
        accordoing to the kernel size.

    Returns:
        np.array: The gaussian kernel.

    """

    assert ksize % 2 == 1
    radius = ksize // 2
    if std is None:
        std = np.sqrt(-(radius**2) / (2 * np.log(0.05)))

    x, y = np.meshgrid(np.linspace(-radius, radius, ksize), np.linspace(-radius, radius, ksize))
    xy = np.stack([x, y], axis=2)
    gk = np.exp(-(xy**2).sum(-1) / (2 * std**2))
    gk /= gk.sum()
    return gk


class FCLayer(th.nn.Module):
    # pyre-fixme[2]: Parameter must be annotated.
    def __init__(self, n_in, n_out, nonlin=fc_default_activation) -> None:
        super().__init__()
        self.fc = th.nn.Linear(n_in, n_out, bias=True)
        # pyre-fixme[4]: Attribute must be annotated.
        self.nonlin = nonlin if nonlin is not None else lambda x: x

        self.fc.bias.data.fill_(0)
        th.nn.init.xavier_uniform_(self.fc.weight.data)

    # pyre-fixme[3]: Return type must be annotated.
    # pyre-fixme[2]: Parameter must be annotated.
    def forward(self, x):
        x = self.fc(x)
        x = self.nonlin(x)
        return x


# pyre-fixme[2]: Parameter must be annotated.
def check_args_shadowing(name, method: object, arg_names) -> None:
    spec = inspect.getfullargspec(method)
    init_args = {*spec.args, *spec.kwonlyargs}
    for arg_name in arg_names:
        if arg_name in init_args:
            raise TypeError(f"{name} attempted to shadow a wrapped argument: {arg_name}")


# For backward compatibility.
class TensorMappingHook(object):
    def __init__(
        self,
        name_mapping: List[Tuple[str, str]],
        expected_shape: Optional[Dict[str, List[int]]] = None,
    ) -> None:
        """This hook is expected to be used with "_register_load_state_dict_pre_hook" to
        modify names and tensor shapes in the loaded state dictionary.

        Args:
            name_mapping: list of string tuples
            A list of tuples containing expected names from the state dict and names expected
            by the module.

            expected_shape: dict
            A mapping from parameter names to expected tensor shapes.
        """
        self.name_mapping = name_mapping
        # pyre-fixme[4]: Attribute must be annotated.
        self.expected_shape = expected_shape if expected_shape is not None else {}

    def __call__(
        self,
        # pyre-fixme[2]: Parameter must be annotated.
        state_dict,
        # pyre-fixme[2]: Parameter must be annotated.
        prefix,
        # pyre-fixme[2]: Parameter must be annotated.
        local_metadata,
        # pyre-fixme[2]: Parameter must be annotated.
        strict,
        # pyre-fixme[2]: Parameter must be annotated.
        missing_keys,
        # pyre-fixme[2]: Parameter must be annotated.
        unexpected_keys,
        # pyre-fixme[2]: Parameter must be annotated.
        error_msgs,
    ) -> None:
        for old_name, new_name in self.name_mapping:
            if prefix + old_name in state_dict:
                tensor = state_dict.pop(prefix + old_name)
                if new_name in self.expected_shape:
                    tensor = tensor.view(*self.expected_shape[new_name])
                state_dict[prefix + new_name] = tensor


# pyre-fixme[3]: Return type must be annotated.
def weight_norm_wrapper(
    cls: Type[th.nn.Module],
    new_cls_name: str,
    name: str = "weight",
    g_dim: int = 0,
    v_dim: Optional[int] = 0,
):
    """Wraps a torch.nn.Module class to support weight normalization. The wrapped class
    is compatible with the fuse/unfuse syntax and is able to load state dict from previous
    implementations.

    Args:
        cls: Type[th.nn.Module]
        Class to apply the wrapper to.

        new_cls_name: str
        Name of the new class created by the wrapper. This should be the name
        of whatever variable you assign the result of this function to. Ex:
        ``SomeLayerWN = weight_norm_wrapper(SomeLayer, "SomeLayerWN", ...)``

        name: str
        Name of the parameter to apply weight normalization to.

        g_dim: int
        Learnable dimension of the magnitude tensor. Set to None or -1 for single scalar magnitude.
        Default values for Linear and Conv2d layers are 0s and for ConvTranspose2d layers are 1s.

        v_dim: int
        Of which dimension of the direction tensor is calutated independently for the norm. Set to
        None or -1 for calculating norm over the entire direction tensor (weight tensor). Default
        values for most of the WN layers are None to preserve the existing behavior.
    """

    class Wrap(cls):
        def __init__(self, *args: Any, name=name, g_dim=g_dim, v_dim=v_dim, **kwargs: Any):
            # Check if the extra arguments are overwriting arguments for the wrapped class
            check_args_shadowing(
                "weight_norm_wrapper", super().__init__, ["name", "g_dim", "v_dim"]
            )
            super().__init__(*args, **kwargs)

            # Sanitize v_dim since we are hacking the built-in utility to support
            # a non-standard WeightNorm implementation.
            if v_dim is None:
                v_dim = -1
            self.weight_norm_args = {"name": name, "g_dim": g_dim, "v_dim": v_dim}
            self.is_fused = True
            self.unfuse()

            # For backward compatibility.
            self._register_load_state_dict_pre_hook(
                TensorMappingHook(
                    [(name, name + "_v"), ("g", name + "_g")],
                    {name + "_g": getattr(self, name + "_g").shape},
                )
            )

        def fuse(self):
            if self.is_fused:
                return
            # Check if the module is frozen.
            param_name = self.weight_norm_args["name"] + "_g"
            if hasattr(self, param_name) and param_name not in self._parameters:
                raise ValueError("Trying to fuse frozen module.")
            remove_weight_norm(self, self.weight_norm_args["name"])
            self.is_fused = True

        def unfuse(self):
            if not self.is_fused:
                return
            # Check if the module is frozen.
            param_name = self.weight_norm_args["name"]
            if hasattr(self, param_name) and param_name not in self._parameters:
                raise ValueError("Trying to unfuse frozen module.")
            wn = WeightNorm.apply(
                self, self.weight_norm_args["name"], self.weight_norm_args["g_dim"]
            )
            # Overwrite the dim property to support mismatched norm calculate for v and g tensor.
            if wn.dim != self.weight_norm_args["v_dim"]:
                wn.dim = self.weight_norm_args["v_dim"]
                # Adjust the norm values.
                weight = getattr(self, self.weight_norm_args["name"] + "_v")
                norm = getattr(self, self.weight_norm_args["name"] + "_g")
                norm.data[:] = th.norm_except_dim(weight, 2, wn.dim)
            self.is_fused = False

        def __deepcopy__(self, memo):
            # Delete derived tensor to avoid deepcopy error.
            if not self.is_fused:
                delattr(self, self.weight_norm_args["name"])

            # Deepcopy.
            cls = self.__class__
            result = cls.__new__(cls)
            memo[id(self)] = result
            for k, v in self.__dict__.items():
                setattr(result, k, copy.deepcopy(v, memo))

            if not self.is_fused:
                setattr(result, self.weight_norm_args["name"], None)
                setattr(self, self.weight_norm_args["name"], None)
            return result

    # Allows for pickling of the wrapper: https://bugs.python.org/issue13520
    Wrap.__qualname__ = new_cls_name

    return Wrap


# pyre-fixme[2]: Parameter must be annotated.
def is_weight_norm_wrapped(module) -> bool:
    for hook in module._forward_pre_hooks.values():
        if isinstance(hook, WeightNorm):
            return True
    return False


class Conv2dUB(th.nn.Conv2d):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        height: int,
        width: int,
        # pyre-fixme[2]: Parameter must be annotated.
        *args,
        bias: bool = True,
        # pyre-fixme[2]: Parameter must be annotated.
        **kwargs,
    ) -> None:
        """Conv2d with untied bias."""
        super().__init__(in_channels, out_channels, *args, bias=False, **kwargs)
        # pyre-fixme[4]: Attribute must be annotated.
        self.bias = th.nn.Parameter(th.zeros(out_channels, height, width)) if bias else None

    # TODO: remove this method once upgraded to pytorch 1.8
    # pyre-fixme[3]: Return type must be annotated.
    def _conv_forward(self, input: th.Tensor, weight: th.Tensor, bias: Optional[th.Tensor]):
        # Copied from pt1.8 source code.
        if self.padding_mode != "zeros":
            input = thf.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode)
            return thf.conv2d(
                input, weight, bias, self.stride, _pair(0), self.dilation, self.groups
            )
        return thf.conv2d(
            input,
            weight,
            bias,
            self.stride,
            # pyre-fixme[6]: For 5th param expected `Union[List[int], int, Size,
            #  typing.Tuple[int, ...]]` but got `Union[str, typing.Tuple[int, ...]]`.
            self.padding,
            self.dilation,
            self.groups,
        )

    def forward(self, input: th.Tensor) -> th.Tensor:
        output = self._conv_forward(input, self.weight, None)
        bias = self.bias
        if bias is not None:
            # Assertion for jit script.
            assert bias is not None
            output = output + bias[None]
        return output


class ConvTranspose2dUB(th.nn.ConvTranspose2d):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        height: int,
        width: int,
        # pyre-fixme[2]: Parameter must be annotated.
        *args,
        bias: bool = True,
        # pyre-fixme[2]: Parameter must be annotated.
        **kwargs,
    ) -> None:
        """ConvTranspose2d with untied bias."""
        super().__init__(in_channels, out_channels, *args, bias=False, **kwargs)

        if self.padding_mode != "zeros":
            raise ValueError("Only `zeros` padding mode is supported for ConvTranspose2dUB")

        # pyre-fixme[4]: Attribute must be annotated.
        self.bias = th.nn.Parameter(th.zeros(out_channels, height, width)) if bias else None

    def forward(self, input: th.Tensor, output_size: Optional[List[int]] = None) -> th.Tensor:
        # TODO(T111390117): Fix Conv member annotations.
        output_padding = self._output_padding(
            input=input,
            output_size=output_size,
            # pyre-fixme[6]: For 3rd param expected `List[int]` but got
            # `Tuple[int, ...]`.
            stride=self.stride,
            # pyre-fixme[6]: For 4th param expected `List[int]` but got
            # `Union[str, typing.Tuple[int, ...]]`.
            padding=self.padding,
            # pyre-fixme[6]: For 5th param expected `List[int]` but got
            # `Tuple[int, ...]`.
            kernel_size=self.kernel_size,
            # This is now required as of D35874490
            num_spatial_dims=input.dim() - 2,
            # pyre-fixme[6]: For 6th param expected `Optional[List[int]]` but got
            # `Tuple[int, ...]`.
            dilation=self.dilation,
        )

        output = thf.conv_transpose2d(
            input,
            self.weight,
            None,
            self.stride,
            # pyre-fixme[6]: For 5th param expected `Union[List[int], int, Size,
            #  typing.Tuple[int, ...]]` but got `Union[str, typing.Tuple[int, ...]]`.
            self.padding,
            output_padding,
            self.groups,
            self.dilation,
        )
        bias = self.bias
        if bias is not None:
            # Assertion for jit script.
            assert bias is not None
            output = output + bias[None]
        return output

    # NOTE: This function (on super _ConvTransposeNd) was updated in D35874490 with non-optional
    # param num_spatial_dims added. Since we need both old/new pytorch versions to work (until those
    # changes reach DGX), we're simply copying the updated code here until then.
    # TODO remove this function once updated torch code is released to DGX
    def _output_padding(
        self,
        input: th.Tensor,
        output_size: Optional[List[int]],
        stride: List[int],
        padding: List[int],
        kernel_size: List[int],
        num_spatial_dims: int,
        dilation: Optional[List[int]] = None,
    ) -> List[int]:
        if output_size is None:
            # converting to list if was not already
            ret = th.nn.modules.utils._single(self.output_padding)
        else:
            has_batch_dim = input.dim() == num_spatial_dims + 2
            num_non_spatial_dims = 2 if has_batch_dim else 1
            if len(output_size) == num_non_spatial_dims + num_spatial_dims:
                output_size = output_size[num_non_spatial_dims:]
            if len(output_size) != num_spatial_dims:
                raise ValueError(
                    "ConvTranspose{}D: for {}D input, output_size must have {} or {} elements (got {})".format(
                        num_spatial_dims,
                        input.dim(),
                        num_spatial_dims,
                        num_non_spatial_dims + num_spatial_dims,
                        len(output_size),
                    )
                )

            min_sizes = th.jit.annotate(List[int], [])
            max_sizes = th.jit.annotate(List[int], [])
            for d in range(num_spatial_dims):
                dim_size = (
                    (input.size(d + num_non_spatial_dims) - 1) * stride[d]
                    - 2 * padding[d]
                    + (dilation[d] if dilation is not None else 1) * (kernel_size[d] - 1)
                    + 1
                )
                min_sizes.append(dim_size)
                max_sizes.append(min_sizes[d] + stride[d] - 1)

            for i in range(len(output_size)):
                size = output_size[i]
                min_size = min_sizes[i]
                max_size = max_sizes[i]
                if size < min_size or size > max_size:
                    raise ValueError(
                        (
                            "requested an output size of {}, but valid sizes range "
                            "from {} to {} (for an input of {})"
                        ).format(output_size, min_sizes, max_sizes, input.size()[2:])
                    )

            res = th.jit.annotate(List[int], [])
            for d in range(num_spatial_dims):
                res.append(output_size[d] - min_sizes[d])

            ret = res
        return ret


# Set default g_dim=0 (Conv2d) or 1 (ConvTranspose2d) and v_dim=None to preserve
# the current weight norm behavior.
# pyre-fixme[5]: Global expression must be annotated.
LinearWN = weight_norm_wrapper(th.nn.Linear, "LinearWN", g_dim=0, v_dim=None)
# pyre-fixme[5]: Global expression must be annotated.
Conv2dWN = weight_norm_wrapper(th.nn.Conv2d, "Conv2dWN", g_dim=0, v_dim=None)
# pyre-fixme[5]: Global expression must be annotated.
Conv2dWNUB = weight_norm_wrapper(Conv2dUB, "Conv2dWNUB", g_dim=0, v_dim=None)
# pyre-fixme[5]: Global expression must be annotated.
ConvTranspose2dWN = weight_norm_wrapper(
    th.nn.ConvTranspose2d, "ConvTranspose2dWN", g_dim=1, v_dim=None
)
# pyre-fixme[5]: Global expression must be annotated.
ConvTranspose2dWNUB = weight_norm_wrapper(
    ConvTranspose2dUB, "ConvTranspose2dWNUB", g_dim=1, v_dim=None
)


class InterpolateHook(object):
    # pyre-fixme[2]: Parameter must be annotated.
    def __init__(self, size=None, scale_factor=None, mode: str = "bilinear") -> None:
        """An object storing options for interpolate function"""
        # pyre-fixme[4]: Attribute must be annotated.
        self.size = size
        # pyre-fixme[4]: Attribute must be annotated.
        self.scale_factor = scale_factor
        self.mode = mode

    # pyre-fixme[3]: Return type must be annotated.
    # pyre-fixme[2]: Parameter must be annotated.
    def __call__(self, module, x):
        assert len(x) == 1, "Module should take only one input for the forward method."
        return thf.interpolate(
            x[0],
            size=self.size,
            scale_factor=self.scale_factor,
            mode=self.mode,
            align_corners=False,
        )


# pyre-fixme[3]: Return type must be annotated.
def interpolate_wrapper(cls: Type[th.nn.Module], new_cls_name: str):
    """Wraps a torch.nn.Module class and perform additional interpolation on the
    first and only positional input of the forward method.

    Args:
        cls: Type[th.nn.Module]
        Class to apply the wrapper to.

        new_cls_name: str
        Name of the new class created by the wrapper. This should be the name
        of whatever variable you assign the result of this function to. Ex:
        ``UpConv = interpolate_wrapper(Conv, "UpConv", ...)``

    """

    class Wrap(cls):
        def __init__(
            self, *args: Any, size=None, scale_factor=None, mode="bilinear", **kwargs: Any
        ):
            check_args_shadowing(
                "interpolate_wrapper", super().__init__, ["size", "scale_factor", "mode"]
            )
            super().__init__(*args, **kwargs)
            self.register_forward_pre_hook(
                InterpolateHook(size=size, scale_factor=scale_factor, mode=mode)
            )

    # Allows for pickling of the wrapper: https://bugs.python.org/issue13520
    Wrap.__qualname__ = new_cls_name
    return Wrap


# pyre-fixme[5]: Global expression must be annotated.
UpConv2d = interpolate_wrapper(th.nn.Conv2d, "UpConv2d")
# pyre-fixme[5]: Global expression must be annotated.
UpConv2dWN = interpolate_wrapper(Conv2dWN, "UpConv2dWN")
# pyre-fixme[5]: Global expression must be annotated.
UpConv2dWNUB = interpolate_wrapper(Conv2dWNUB, "UpConv2dWNUB")


class GlobalAvgPool(th.nn.Module):
    def __init__(self) -> None:
        super().__init__()

    # pyre-fixme[3]: Return type must be annotated.
    # pyre-fixme[2]: Parameter must be annotated.
    def forward(self, x):
        return x.view(x.shape[0], x.shape[1], -1).mean(dim=2)


class Upsample(th.nn.Module):
    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__()
        # pyre-fixme[4]: Attribute must be annotated.
        self.args = args
        # pyre-fixme[4]: Attribute must be annotated.
        self.kwargs = kwargs

    # pyre-fixme[3]: Return type must be annotated.
    # pyre-fixme[2]: Parameter must be annotated.
    def forward(self, x):
        return thf.interpolate(x, *self.args, **self.kwargs)


class DenseAffine(th.nn.Module):
    # Per-pixel affine transform layer.

    # pyre-fixme[2]: Parameter must be annotated.
    def __init__(self, shape) -> None:
        super().__init__()

        self.W = th.nn.Parameter(th.ones(*shape))
        self.b = th.nn.Parameter(th.zeros(*shape))

    # pyre-fixme[3]: Return type must be annotated.
    # pyre-fixme[2]: Parameter must be annotated.
    def forward(self, x, scale=None, crop=None):
        W = self.W
        b = self.b

        if scale is not None:
            W = thf.interpolate(W, scale_factor=scale, mode="bilinear")
            b = thf.interpolate(b, scale_factor=scale, mode="bilinear")

        if crop is not None:
            W = W[..., crop[0] : crop[1], crop[2] : crop[3]]
            b = b[..., crop[0] : crop[1], crop[2] : crop[3]]

        return x * W + b


def glorot(m: th.nn.Module, alpha: float = 1.0) -> None:
    gain = np.sqrt(2.0 / (1.0 + alpha**2))

    if isinstance(m, th.nn.Conv2d):
        ksize = m.kernel_size[0] * m.kernel_size[1]
        n1 = m.in_channels
        n2 = m.out_channels

        std = gain * np.sqrt(2.0 / ((n1 + n2) * ksize))
    elif isinstance(m, th.nn.ConvTranspose2d):
        ksize = m.kernel_size[0] * m.kernel_size[1] // 4
        n1 = m.in_channels
        n2 = m.out_channels

        std = gain * np.sqrt(2.0 / ((n1 + n2) * ksize))
    elif isinstance(m, th.nn.ConvTranspose3d):
        ksize = m.kernel_size[0] * m.kernel_size[1] * m.kernel_size[2] // 8
        n1 = m.in_channels
        n2 = m.out_channels

        std = gain * np.sqrt(2.0 / ((n1 + n2) * ksize))
    elif isinstance(m, th.nn.Linear):
        n1 = m.in_features
        n2 = m.out_features

        std = gain * np.sqrt(2.0 / (n1 + n2))
    else:
        return

    is_wnw = is_weight_norm_wrapped(m)
    if is_wnw:
        m.fuse()

    m.weight.data.uniform_(-std * np.sqrt(3.0), std * np.sqrt(3.0))
    if m.bias is not None:
        m.bias.data.zero_()

    if isinstance(m, th.nn.ConvTranspose2d):
        # hardcoded for stride=2 for now
        m.weight.data[:, :, 0::2, 1::2] = m.weight.data[:, :, 0::2, 0::2]
        m.weight.data[:, :, 1::2, 0::2] = m.weight.data[:, :, 0::2, 0::2]
        m.weight.data[:, :, 1::2, 1::2] = m.weight.data[:, :, 0::2, 0::2]

    if is_wnw:
        m.unfuse()


def make_tuple(x: Union[int, Tuple[int, int]], n: int) -> Tuple[int, int]:
    if isinstance(x, int):
        return tuple([x for _ in range(n)])
    else:
        return x


class LinearELR(th.nn.Module):
    def __init__(
        self,
        in_features: int,
        out_features: int,
        bias: bool = True,
        gain: Optional[float] = None,
        lr_mul: float = 1.0,
        bias_lr_mul: Optional[float] = None,
    ) -> None:
        super(LinearELR, self).__init__()
        self.in_features = in_features
        self.weight = th.nn.Parameter(th.zeros(out_features, in_features, dtype=th.float32))
        if bias:
            self.bias: th.nn.Parameter = th.nn.Parameter(th.zeros(out_features, dtype=th.float32))
        else:
            self.register_parameter("bias", None)
        self.std: float = 0.0
        if gain is None:
            self.gain: float = np.sqrt(2.0)
        else:
            self.gain: float = gain
        self.lr_mul = lr_mul
        if bias_lr_mul is None:
            bias_lr_mul = lr_mul
        self.bias_lr_mul = bias_lr_mul
        self.reset_parameters()

    def reset_parameters(self) -> None:
        self.std = self.gain / np.sqrt(self.in_features) * self.lr_mul
        init.normal_(self.weight, mean=0, std=1.0 / self.lr_mul)

        if self.bias is not None:
            with th.no_grad():
                self.bias.zero_()

    def forward(self, x: th.Tensor) -> th.Tensor:
        bias = self.bias
        if bias is not None:
            bias = bias * self.bias_lr_mul
        return thf.linear(x, self.weight.mul(self.std), bias)


class Conv2dELR(th.nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int]],
        stride: Union[int, Tuple[int, int]] = 1,
        padding: Union[int, Tuple[int, int]] = 0,
        output_padding: Union[int, Tuple[int, int]] = 0,
        dilation: Union[int, Tuple[int, int]] = 1,
        groups: int = 1,
        bias: bool = True,
        untied: bool = False,
        height: int = 1,
        width: int = 1,
        gain: Optional[float] = None,
        transpose: bool = False,
        fuse_box_filter: bool = False,
        lr_mul: float = 1.0,
        bias_lr_mul: Optional[float] = None,
    ) -> None:
        super().__init__()
        if in_channels % groups != 0:
            raise ValueError("in_channels must be divisible by groups")
        if out_channels % groups != 0:
            raise ValueError("out_channels must be divisible by groups")
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size: Tuple[int, int] = make_tuple(kernel_size, 2)
        self.stride: Tuple[int, int] = make_tuple(stride, 2)
        self.padding: Tuple[int, int] = make_tuple(padding, 2)
        self.output_padding: Tuple[int, int] = make_tuple(output_padding, 2)
        self.dilation: Tuple[int, int] = make_tuple(dilation, 2)
        self.groups = groups
        if gain is None:
            self.gain: float = np.sqrt(2.0)
        else:
            self.gain: float = gain
        self.lr_mul = lr_mul
        if bias_lr_mul is None:
            bias_lr_mul = lr_mul
        self.bias_lr_mul = bias_lr_mul
        self.transpose = transpose
        self.fan_in: float = np.prod(self.kernel_size) * in_channels // groups
        self.fuse_box_filter = fuse_box_filter
        if transpose:
            self.weight: th.nn.Parameter = th.nn.Parameter(
                th.zeros(in_channels, out_channels // groups, *self.kernel_size, dtype=th.float32)
            )
        else:
            self.weight: th.nn.Parameter = th.nn.Parameter(
                th.zeros(out_channels, in_channels // groups, *self.kernel_size, dtype=th.float32)
            )
        if bias:
            if untied:
                self.bias: th.nn.Parameter = th.nn.Parameter(
                    th.zeros(out_channels, height, width, dtype=th.float32)
                )
            else:
                self.bias: th.nn.Parameter = th.nn.Parameter(
                    th.zeros(out_channels, dtype=th.float32)
                )
        else:
            self.register_parameter("bias", None)
        self.untied = untied
        self.std: float = 0.0
        self.reset_parameters()

    def reset_parameters(self) -> None:
        self.std = self.gain / np.sqrt(self.fan_in) * self.lr_mul
        init.normal_(self.weight, mean=0, std=1.0 / self.lr_mul)

        if self.bias is not None:
            with th.no_grad():
                self.bias.zero_()

    def forward(self, x: th.Tensor) -> th.Tensor:
        if self.transpose:
            w = self.weight
            if self.fuse_box_filter:
                w = thf.pad(w, (1, 1, 1, 1), mode="constant")
                w = w[:, :, 1:, 1:] + w[:, :, :-1, 1:] + w[:, :, 1:, :-1] + w[:, :, :-1, :-1]
            bias = self.bias
            if bias is not None:
                bias = bias * self.bias_lr_mul
            out = thf.conv_transpose2d(
                x,
                w * self.std,
                bias if not self.untied else None,
                stride=self.stride,
                padding=self.padding,
                output_padding=self.output_padding,
                dilation=self.dilation,
                groups=self.groups,
            )
            if self.untied and bias is not None:
                out = out + bias[None, ...]
            return out
        else:
            w = self.weight
            if self.fuse_box_filter:
                w = thf.pad(w, (1, 1, 1, 1), mode="constant")
                w = (
                    w[:, :, 1:, 1:] + w[:, :, :-1, 1:] + w[:, :, 1:, :-1] + w[:, :, :-1, :-1]
                ) * 0.25
            bias = self.bias
            if bias is not None:
                bias = bias * self.bias_lr_mul
            out = thf.conv2d(
                x,
                w * self.std,
                bias if not self.untied else None,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
            )
            if self.untied and bias is not None:
                out = out + bias[None, ...]
            return out


class ConcatPyramid(th.nn.Module):
    def __init__(
        self,
        # pyre-fixme[2]: Parameter must be annotated.
        branch,
        # pyre-fixme[2]: Parameter must be annotated.
        n_concat_in,
        every_other: bool = True,
        ksize: int = 7,
        # pyre-fixme[2]: Parameter must be annotated.
        kstd=None,
        transposed: bool = False,
    ) -> None:
        """Module which wraps an up/down conv branch taking one input X and
        converts it into a branch which takes two inputs X, Y. At each layer of
        the original branch, we concatenate the previous output and Y,
        up/downsampling Y appropriately, before running the layer.

        Args:
            branch: th.nn.Sequential or th.nn.ModuleList
            A branch containing up/down convs, optionally separated by nonlinearities.

            n_concat_in: int
            Number of channels in the to-be-concatenated input (Y).

            every_other: bool
            If every other layer is a nonlinearity, set this flag. Default is on.

            ksize: int
            Kernel size for the Gaussian blur used to downsample each step of the pyramid.

            kstd: int
            Kernel std. dev. for the Gaussian blur used to downsample each step of the pyramid.
            If None, it is determined automatically.

            transposed: bool
            Whether or not the conv stack contains transposed convolutions or not.
        """
        super().__init__()
        assert isinstance(branch, (th.nn.Sequential, th.nn.ModuleList))

        # pyre-fixme[4]: Attribute must be annotated.
        self.branch = branch
        # pyre-fixme[4]: Attribute must be annotated.
        self.n_concat_in = n_concat_in
        self.every_other = every_other
        self.ksize = ksize
        # pyre-fixme[4]: Attribute must be annotated.
        self.kstd = kstd
        self.transposed = transposed
        if every_other:
            # pyre-fixme[4]: Attribute must be annotated.
            self.levels = int(np.ceil(len(branch) / 2))
        else:
            self.levels = len(branch)

        kernel = th.from_numpy(gaussian_kernel(ksize, kstd)).float()
        self.register_buffer("blur_kernel", kernel[None, None].expand(n_concat_in, -1, -1, -1))

    # pyre-fixme[3]: Return type must be annotated.
    # pyre-fixme[2]: Parameter must be annotated.
    def forward(self, x, y):
        if self.transposed:
            blurred = thf.conv2d(
                y, self.blur_kernel, groups=self.n_concat_in, padding=self.ksize // 2
            )
            pyramid = [blurred[:, :, ::2, ::2]]
        else:
            pyramid = [y]

        for _ in range(self.levels - 1):
            blurred = thf.conv2d(
                pyramid[0], self.blur_kernel, groups=self.n_concat_in, padding=self.ksize // 2
            )
            pyramid.insert(0, blurred[:, :, ::2, ::2])

        out = x
        for i, layer in enumerate(self.branch):
            if (i % 2) == 0 or not self.every_other:
                idx = i // 2 if self.every_other else i
                out = th.cat([out, pyramid[idx]], dim=1)
            out = layer(out)
        return out


# From paper "Making Convolutional Networks Shift-Invariant Again"
# https://richzhang.github.io/antialiased-cnns/
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def get_pad_layer(pad_type):
    if pad_type in ["refl", "reflect"]:
        PadLayer = th.nn.ReflectionPad2d
    elif pad_type in ["repl", "replicate"]:
        PadLayer = th.nn.ReplicationPad2d
    elif pad_type == "zero":
        PadLayer = th.nn.ZeroPad2d
    else:
        print("Pad type [%s] not recognized" % pad_type)
    # pyre-fixme[61]: `PadLayer` is undefined, or not always defined.
    return PadLayer


class Downsample(th.nn.Module):
    # pyre-fixme[3]: Return type must be annotated.
    # pyre-fixme[2]: Parameter must be annotated.
    def __init__(self, pad_type="reflect", filt_size=3, stride=2, channels=None, pad_off=0):
        super(Downsample, self).__init__()
        # pyre-fixme[4]: Attribute must be annotated.
        self.filt_size = filt_size
        # pyre-fixme[4]: Attribute must be annotated.
        self.pad_off = pad_off
        # pyre-fixme[4]: Attribute must be annotated.
        self.pad_sizes = [
            int(1.0 * (filt_size - 1) / 2),
            int(np.ceil(1.0 * (filt_size - 1) / 2)),
            int(1.0 * (filt_size - 1) / 2),
            int(np.ceil(1.0 * (filt_size - 1) / 2)),
        ]
        self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes]
        # pyre-fixme[4]: Attribute must be annotated.
        self.stride = stride
        self.off = int((self.stride - 1) / 2.0)
        # pyre-fixme[4]: Attribute must be annotated.
        self.channels = channels

        # print('Filter size [%i]'%filt_size)
        if self.filt_size == 1:
            a = np.array(
                [
                    1.0,
                ]
            )
        elif self.filt_size == 2:
            a = np.array([1.0, 1.0])
        elif self.filt_size == 3:
            a = np.array([1.0, 2.0, 1.0])
        elif self.filt_size == 4:
            a = np.array([1.0, 3.0, 3.0, 1.0])
        elif self.filt_size == 5:
            a = np.array([1.0, 4.0, 6.0, 4.0, 1.0])
        elif self.filt_size == 6:
            a = np.array([1.0, 5.0, 10.0, 10.0, 5.0, 1.0])
        elif self.filt_size == 7:
            a = np.array([1.0, 6.0, 15.0, 20.0, 15.0, 6.0, 1.0])

        filt = th.Tensor(a[:, None] * a[None, :])
        filt = filt / th.sum(filt)
        self.register_buffer("filt", filt[None, None, :, :].repeat((self.channels, 1, 1, 1)))

        # pyre-fixme[4]: Attribute must be annotated.
        self.pad = get_pad_layer(pad_type)(self.pad_sizes)

    # pyre-fixme[3]: Return type must be annotated.
    # pyre-fixme[2]: Parameter must be annotated.
    def forward(self, inp):
        if self.filt_size == 1:
            if self.pad_off == 0:
                return inp[:, :, :: self.stride, :: self.stride]
            else:
                return self.pad(inp)[:, :, :: self.stride, :: self.stride]
        else:
            return th.nn.functional.conv2d(
                self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1]
            )