Spaces:
Runtime error
Runtime error
File size: 25,319 Bytes
882f6e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import logging
from typing import Dict, Optional, Tuple
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from torchvision.utils import make_grid
from torchvision.transforms.functional import gaussian_blur
import visualize.ca_body.nn.layers as la
from visualize.ca_body.nn.blocks import (
ConvBlock,
ConvDownBlock,
UpConvBlockDeep,
tile2d,
weights_initializer,
)
from visualize.ca_body.nn.dof_cal import LearnableBlur
from visualize.ca_body.utils.geom import (
GeometryModule,
compute_view_cos,
depth_discontuity_mask,
depth2normals,
)
from visualize.ca_body.nn.shadow import ShadowUNet, PoseToShadow
from visualize.ca_body.nn.unet import UNetWB
from visualize.ca_body.nn.color_cal import CalV5
from visualize.ca_body.utils.image import linear2displayBatch
from visualize.ca_body.utils.lbs import LBSModule
from visualize.ca_body.utils.render import RenderLayer
from visualize.ca_body.utils.seams import SeamSampler
from visualize.ca_body.utils.render import RenderLayer
from visualize.ca_body.nn.face import FaceDecoderFrontal
logger = logging.getLogger(__name__)
class CameraPixelBias(nn.Module):
def __init__(self, image_height, image_width, cameras, ds_rate) -> None:
super().__init__()
self.image_height = image_height
self.image_width = image_width
self.cameras = cameras
self.n_cameras = len(cameras)
bias = th.zeros(
(self.n_cameras, 1, image_width // ds_rate, image_height // ds_rate), dtype=th.float32
)
self.register_parameter("bias", nn.Parameter(bias))
def forward(self, idxs: th.Tensor):
bias_up = F.interpolate(
self.bias[idxs], size=(self.image_height, self.image_width), mode='bilinear'
)
return bias_up
class AutoEncoder(nn.Module):
def __init__(
self,
encoder,
decoder,
decoder_view,
encoder_face,
# hqlp decoder to get the codes
decoder_face,
shadow_net,
upscale_net,
assets,
pose_to_shadow=None,
renderer=None,
cal=None,
pixel_cal=None,
learn_blur: bool = True,
):
super().__init__()
# TODO: should we have a shared LBS here?
self.geo_fn = GeometryModule(
assets.topology.vi,
assets.topology.vt,
assets.topology.vti,
assets.topology.v2uv,
uv_size=1024,
impaint=True,
)
self.lbs_fn = LBSModule(
assets.lbs_model_json,
assets.lbs_config_dict,
assets.lbs_template_verts,
assets.lbs_scale,
assets.global_scaling,
)
self.seam_sampler = SeamSampler(assets.seam_data_1024)
self.seam_sampler_2k = SeamSampler(assets.seam_data_2048)
# joint tex -> body and clothes
# TODO: why do we have a joint one in the first place?
tex_mean = gaussian_blur(th.as_tensor(assets.tex_mean)[np.newaxis], kernel_size=11)
self.register_buffer("tex_mean", F.interpolate(tex_mean, (2048, 2048), mode='bilinear'))
# this is shared
self.tex_std = assets.tex_var if 'tex_var' in assets else 64.0
face_cond_mask = th.as_tensor(assets.face_cond_mask, dtype=th.float32)[
np.newaxis, np.newaxis
]
self.register_buffer("face_cond_mask", face_cond_mask)
meye_mask = self.geo_fn.to_uv(
th.as_tensor(assets.mouth_eyes_mask_geom[np.newaxis, :, np.newaxis])
)
meye_mask = F.interpolate(meye_mask, (2048, 2048), mode='bilinear')
self.register_buffer("meye_mask", meye_mask)
self.decoder = ConvDecoder(
geo_fn=self.geo_fn,
seam_sampler=self.seam_sampler,
**decoder,
assets=assets,
)
# embs for everything but face
non_head_mask = 1.0 - assets.face_mask
self.encoder = Encoder(
geo_fn=self.geo_fn,
mask=non_head_mask,
**encoder,
)
self.encoder_face = FaceEncoder(
assets=assets,
**encoder_face,
)
# using face decoder to generate better conditioning
decoder_face_ckpt_path = None
if 'ckpt' in decoder_face:
decoder_face_ckpt_path = decoder_face.pop('ckpt')
self.decoder_face = FaceDecoderFrontal(assets=assets, **decoder_face)
if decoder_face_ckpt_path is not None:
self.decoder_face.load_state_dict(th.load(decoder_face_ckpt_path), strict=False)
self.decoder_view = UNetViewDecoder(
self.geo_fn,
seam_sampler=self.seam_sampler,
**decoder_view,
)
self.shadow_net = ShadowUNet(
ao_mean=assets.ao_mean,
interp_mode="bilinear",
biases=False,
**shadow_net,
)
self.pose_to_shadow_enabled = False
if pose_to_shadow is not None:
self.pose_to_shadow_enabled = True
self.pose_to_shadow = PoseToShadow(**pose_to_shadow)
self.upscale_net = UpscaleNet(
in_channels=6, size=1024, upscale_factor=2, out_channels=3, **upscale_net
)
self.pixel_cal_enabled = False
if pixel_cal is not None:
self.pixel_cal_enabled = True
self.pixel_cal = CameraPixelBias(**pixel_cal, cameras=assets.camera_ids)
self.learn_blur_enabled = False
if learn_blur:
self.learn_blur_enabled = True
self.learn_blur = LearnableBlur(assets.camera_ids)
# training-only stuff
self.cal_enabled = False
if cal is not None:
self.cal_enabled = True
self.cal = CalV5(**cal, cameras=assets.camera_ids)
self.rendering_enabled = False
if renderer is not None:
self.rendering_enabled = True
self.renderer = RenderLayer(
h=renderer.image_height,
w=renderer.image_width,
vt=self.geo_fn.vt,
vi=self.geo_fn.vi,
vti=self.geo_fn.vti,
flip_uvs=False,
)
@th.jit.unused
def compute_summaries(self, preds, batch):
# TODO: switch to common summaries?
# return compute_summaries_mesh(preds, batch)
rgb = linear2displayBatch(preds['rgb'][:, :3])
rgb_gt = linear2displayBatch(batch['image'])
depth = preds['depth'][:, np.newaxis]
mask = depth > 0.0
normals = (
255 * (1.0 - depth2normals(depth, batch['focal'], batch['princpt'])) / 2.0
) * mask
grid_rgb = make_grid(rgb, nrow=16).permute(1, 2, 0).clip(0, 255).to(th.uint8)
grid_rgb_gt = make_grid(rgb_gt, nrow=16).permute(1, 2, 0).clip(0, 255).to(th.uint8)
grid_normals = make_grid(normals, nrow=16).permute(1, 2, 0).clip(0, 255).to(th.uint8)
progress_image = th.cat([grid_rgb, grid_rgb_gt, grid_normals], dim=0)
return {
'progress_image': (progress_image, 'png'),
}
def forward_tex(self, tex_mean_rec, tex_view_rec, shadow_map):
x = th.cat([tex_mean_rec, tex_view_rec], dim=1)
tex_rec = tex_mean_rec + tex_view_rec
tex_rec = self.seam_sampler.impaint(tex_rec)
tex_rec = self.seam_sampler.resample(tex_rec)
tex_rec = F.interpolate(tex_rec, size=(2048, 2048), mode="bilinear", align_corners=False)
tex_rec = tex_rec + self.upscale_net(x)
tex_rec = tex_rec * self.tex_std + self.tex_mean
shadow_map = self.seam_sampler_2k.impaint(shadow_map)
shadow_map = self.seam_sampler_2k.resample(shadow_map)
shadow_map = self.seam_sampler_2k.resample(shadow_map)
tex_rec = tex_rec * shadow_map
tex_rec = self.seam_sampler_2k.impaint(tex_rec)
tex_rec = self.seam_sampler_2k.resample(tex_rec)
tex_rec = self.seam_sampler_2k.resample(tex_rec)
return tex_rec
def encode(self, geom: th.Tensor, lbs_motion: th.Tensor, face_embs_hqlp: th.Tensor):
with th.no_grad():
verts_unposed = self.lbs_fn.unpose(geom, lbs_motion)
verts_unposed_uv = self.geo_fn.to_uv(verts_unposed)
# extract face region for geom + tex
enc_preds = self.encoder(motion=lbs_motion, verts_unposed=verts_unposed)
# TODO: probably need to rename these to `face_embs_mugsy` or smth
# TODO: we need the same thing for face?
# enc_face_preds = self.encoder_face(verts_unposed_uv)
with th.no_grad():
face_dec_preds = self.decoder_face(face_embs_hqlp)
enc_face_preds = self.encoder_face(**face_dec_preds)
preds = {
**enc_preds,
**enc_face_preds,
'face_dec_preds': face_dec_preds,
}
return preds
def forward(
self,
# TODO: should we try using this as well for cond?
lbs_motion: th.Tensor,
campos: th.Tensor,
geom: Optional[th.Tensor] = None,
ao: Optional[th.Tensor] = None,
K: Optional[th.Tensor] = None,
Rt: Optional[th.Tensor] = None,
image_bg: Optional[th.Tensor] = None,
image: Optional[th.Tensor] = None,
image_mask: Optional[th.Tensor] = None,
embs: Optional[th.Tensor] = None,
_index: Optional[Dict[str, th.Tensor]] = None,
face_embs: Optional[th.Tensor] = None,
embs_conv: Optional[th.Tensor] = None,
tex_seg: Optional[th.Tensor] = None,
encode=True,
iteration: Optional[int] = None,
**kwargs,
):
B = lbs_motion.shape[0]
if not th.jit.is_scripting() and encode:
# NOTE: these are `face_embs_hqlp`
enc_preds = self.encode(geom, lbs_motion, face_embs)
embs = enc_preds['embs']
# NOTE: these are `face_embs` in body space
face_embs_body = enc_preds['face_embs']
dec_preds = self.decoder(
motion=lbs_motion,
embs=embs,
face_embs=face_embs_body,
embs_conv=embs_conv,
)
geom_rec = self.lbs_fn.pose(dec_preds['geom_delta_rec'], lbs_motion)
dec_view_preds = self.decoder_view(
geom_rec=geom_rec,
tex_mean_rec=dec_preds["tex_mean_rec"],
camera_pos=campos,
)
# TODO: should we train an AO model?
if self.training and self.pose_to_shadow_enabled:
shadow_preds = self.shadow_net(ao_map=ao)
pose_shadow_preds = self.pose_to_shadow(lbs_motion)
shadow_preds['pose_shadow_map'] = pose_shadow_preds['shadow_map']
elif self.pose_to_shadow_enabled:
shadow_preds = self.pose_to_shadow(lbs_motion)
else:
shadow_preds = self.shadow_net(ao_map=ao)
tex_rec = self.forward_tex(
dec_preds["tex_mean_rec"],
dec_view_preds["tex_view_rec"],
shadow_preds["shadow_map"],
)
if not th.jit.is_scripting() and self.cal_enabled:
tex_rec = self.cal(tex_rec, self.cal.name_to_idx(_index['camera']))
preds = {
'geom': geom_rec,
'tex_rec': tex_rec,
**dec_preds,
**shadow_preds,
**dec_view_preds,
}
if not th.jit.is_scripting() and encode:
preds.update(**enc_preds)
if not th.jit.is_scripting() and self.rendering_enabled:
# NOTE: this is a reduced version tested for forward only
renders = self.renderer(
preds['geom'],
tex_rec,
K=K,
Rt=Rt,
)
preds.update(rgb=renders['render'])
if not th.jit.is_scripting() and self.learn_blur_enabled:
preds['rgb'] = self.learn_blur(preds['rgb'], _index['camera'])
preds['learn_blur_weights'] = self.learn_blur.reg(_index['camera'])
if not th.jit.is_scripting() and self.pixel_cal_enabled:
assert self.cal_enabled
cam_idxs = self.cal.name_to_idx(_index['camera'])
pixel_bias = self.pixel_cal(cam_idxs)
preds['rgb'] = preds['rgb'] + pixel_bias
return preds
class Encoder(nn.Module):
"""A joint encoder for tex and geometry."""
def __init__(
self,
geo_fn,
n_embs,
noise_std,
mask,
logvar_scale=0.1,
):
"""Fixed-width conv encoder."""
super().__init__()
self.noise_std = noise_std
self.n_embs = n_embs
self.geo_fn = geo_fn
self.logvar_scale = logvar_scale
self.verts_conv = ConvDownBlock(3, 8, 512)
mask = th.as_tensor(mask[np.newaxis, np.newaxis], dtype=th.float32)
mask = F.interpolate(mask, size=(512, 512), mode='bilinear').to(th.bool)
self.register_buffer("mask", mask)
self.joint_conv_blocks = nn.Sequential(
ConvDownBlock(8, 16, 256),
ConvDownBlock(16, 32, 128),
ConvDownBlock(32, 32, 64),
ConvDownBlock(32, 64, 32),
ConvDownBlock(64, 128, 16),
ConvDownBlock(128, 128, 8),
# ConvDownBlock(128, 128, 4),
)
# TODO: should we put initializer
self.mu = la.LinearWN(4 * 4 * 128, self.n_embs)
self.logvar = la.LinearWN(4 * 4 * 128, self.n_embs)
self.apply(weights_initializer(0.2))
self.mu.apply(weights_initializer(1.0))
self.logvar.apply(weights_initializer(1.0))
def forward(self, motion, verts_unposed):
preds = {}
B = motion.shape[0]
# converting motion to the unposed
verts_cond = (
F.interpolate(self.geo_fn.to_uv(verts_unposed), size=(512, 512), mode='bilinear')
* self.mask
)
verts_cond = self.verts_conv(verts_cond)
# tex_cond = F.interpolate(tex_avg, size=(512, 512), mode='bilinear') * self.mask
# tex_cond = self.tex_conv(tex_cond)
# joint_cond = th.cat([verts_cond, tex_cond], dim=1)
joint_cond = verts_cond
x = self.joint_conv_blocks(joint_cond)
x = x.reshape(B, -1)
embs_mu = self.mu(x)
embs_logvar = self.logvar_scale * self.logvar(x)
# NOTE: the noise is only applied to the input-conditioned values
if self.training:
noise = th.randn_like(embs_mu)
embs = embs_mu + th.exp(embs_logvar) * noise * self.noise_std
else:
embs = embs_mu.clone()
preds.update(
embs=embs,
embs_mu=embs_mu,
embs_logvar=embs_logvar,
)
return preds
class ConvDecoder(nn.Module):
"""Multi-region view-independent decoder."""
def __init__(
self,
geo_fn,
uv_size,
seam_sampler,
init_uv_size,
n_pose_dims,
n_pose_enc_channels,
n_embs,
n_embs_enc_channels,
n_face_embs,
n_init_channels,
n_min_channels,
assets,
):
super().__init__()
self.geo_fn = geo_fn
self.uv_size = uv_size
self.init_uv_size = init_uv_size
self.n_pose_dims = n_pose_dims
self.n_pose_enc_channels = n_pose_enc_channels
self.n_embs = n_embs
self.n_embs_enc_channels = n_embs_enc_channels
self.n_face_embs = n_face_embs
self.n_blocks = int(np.log2(self.uv_size // init_uv_size))
self.sizes = [init_uv_size * 2**s for s in range(self.n_blocks + 1)]
# TODO: just specify a sequence?
self.n_channels = [
max(n_init_channels // 2**b, n_min_channels) for b in range(self.n_blocks + 1)
]
logger.info(f"ConvDecoder: n_channels = {self.n_channels}")
self.local_pose_conv_block = ConvBlock(
n_pose_dims,
n_pose_enc_channels,
init_uv_size,
kernel_size=1,
padding=0,
)
self.embs_fc = nn.Sequential(
la.LinearWN(n_embs, 4 * 4 * 128),
nn.LeakyReLU(0.2, inplace=True),
)
# TODO: should we switch to the basic version?
self.embs_conv_block = nn.Sequential(
UpConvBlockDeep(128, 128, 8),
UpConvBlockDeep(128, 128, 16),
UpConvBlockDeep(128, 64, 32),
UpConvBlockDeep(64, n_embs_enc_channels, 64),
)
self.face_embs_fc = nn.Sequential(
la.LinearWN(n_face_embs, 4 * 4 * 32),
nn.LeakyReLU(0.2, inplace=True),
)
self.face_embs_conv_block = nn.Sequential(
UpConvBlockDeep(32, 64, 8),
UpConvBlockDeep(64, 64, 16),
UpConvBlockDeep(64, n_embs_enc_channels, 32),
)
n_groups = 2
self.joint_conv_block = ConvBlock(
n_pose_enc_channels + n_embs_enc_channels,
n_init_channels,
self.init_uv_size,
)
self.conv_blocks = nn.ModuleList([])
for b in range(self.n_blocks):
self.conv_blocks.append(
UpConvBlockDeep(
self.n_channels[b] * n_groups,
self.n_channels[b + 1] * n_groups,
self.sizes[b + 1],
groups=n_groups,
),
)
self.verts_conv = la.Conv2dWNUB(
in_channels=self.n_channels[-1],
out_channels=3,
kernel_size=3,
height=self.uv_size,
width=self.uv_size,
padding=1,
)
self.tex_conv = la.Conv2dWNUB(
in_channels=self.n_channels[-1],
out_channels=3,
kernel_size=3,
height=self.uv_size,
width=self.uv_size,
padding=1,
)
self.apply(weights_initializer(0.2))
self.verts_conv.apply(weights_initializer(1.0))
self.tex_conv.apply(weights_initializer(1.0))
self.seam_sampler = seam_sampler
# NOTE: removing head region from pose completely
pose_cond_mask = th.as_tensor(
assets.pose_cond_mask[np.newaxis] * (1 - assets.head_cond_mask[np.newaxis, np.newaxis]),
dtype=th.int32,
)
self.register_buffer("pose_cond_mask", pose_cond_mask)
face_cond_mask = th.as_tensor(assets.face_cond_mask, dtype=th.float32)[
np.newaxis, np.newaxis
]
self.register_buffer("face_cond_mask", face_cond_mask)
body_cond_mask = th.as_tensor(assets.body_cond_mask, dtype=th.float32)[
np.newaxis, np.newaxis
]
self.register_buffer("body_cond_mask", body_cond_mask)
def forward(self, motion, embs, face_embs, embs_conv: Optional[th.Tensor] = None):
# processing pose
pose = motion[:, 6:]
B = pose.shape[0]
non_head_mask = (self.body_cond_mask * (1.0 - self.face_cond_mask)).clip(0.0, 1.0)
pose_masked = tile2d(pose, self.init_uv_size) * self.pose_cond_mask
pose_conv = self.local_pose_conv_block(pose_masked) * non_head_mask
# TODO: decoding properly?
if embs_conv is None:
embs_conv = self.embs_conv_block(self.embs_fc(embs).reshape(B, 128, 4, 4))
face_conv = self.face_embs_conv_block(self.face_embs_fc(face_embs).reshape(B, 32, 4, 4))
# merging embeddings with spatial masks
embs_conv[:, :, 32:, :32] = (
face_conv * self.face_cond_mask[:, :, 32:, :32]
+ embs_conv[:, :, 32:, :32] * non_head_mask[:, :, 32:, :32]
)
joint = th.cat([pose_conv, embs_conv], axis=1)
joint = self.joint_conv_block(joint)
x = th.cat([joint, joint], axis=1)
for b in range(self.n_blocks):
x = self.conv_blocks[b](x)
# NOTE: here we do resampling at feature level
x = self.seam_sampler.impaint(x)
x = self.seam_sampler.resample(x)
x = self.seam_sampler.resample(x)
verts_features, tex_features = th.split(x, self.n_channels[-1], 1)
verts_uv_delta_rec = self.verts_conv(verts_features)
# TODO: need to get values
verts_delta_rec = self.geo_fn.from_uv(verts_uv_delta_rec)
tex_mean_rec = self.tex_conv(tex_features)
preds = {
'geom_delta_rec': verts_delta_rec,
'geom_uv_delta_rec': verts_uv_delta_rec,
'tex_mean_rec': tex_mean_rec,
'embs_conv': embs_conv,
'pose_conv': pose_conv,
}
return preds
class FaceEncoder(nn.Module):
"""A joint encoder for tex and geometry."""
def __init__(
self,
noise_std,
assets,
n_embs=256,
uv_size=512,
logvar_scale=0.1,
n_vert_in=7306 * 3,
prefix="face_",
):
"""Fixed-width conv encoder."""
super().__init__()
# TODO:
self.noise_std = noise_std
self.n_embs = n_embs
self.logvar_scale = logvar_scale
self.prefix = prefix
self.uv_size = uv_size
assert self.uv_size == 512
tex_cond_mask = assets.mugsy_face_mask[..., 0]
tex_cond_mask = th.as_tensor(tex_cond_mask, dtype=th.float32)[np.newaxis, np.newaxis]
tex_cond_mask = F.interpolate(
tex_cond_mask, (self.uv_size, self.uv_size), mode="bilinear", align_corners=True
)
self.register_buffer("tex_cond_mask", tex_cond_mask)
self.conv_blocks = nn.Sequential(
ConvDownBlock(3, 4, 512),
ConvDownBlock(4, 8, 256),
ConvDownBlock(8, 16, 128),
ConvDownBlock(16, 32, 64),
ConvDownBlock(32, 64, 32),
ConvDownBlock(64, 128, 16),
ConvDownBlock(128, 128, 8),
)
self.geommod = nn.Sequential(la.LinearWN(n_vert_in, 256), nn.LeakyReLU(0.2, inplace=True))
self.jointmod = nn.Sequential(
la.LinearWN(256 + 128 * 4 * 4, 512), nn.LeakyReLU(0.2, inplace=True)
)
# TODO: should we put initializer
self.mu = la.LinearWN(512, self.n_embs)
self.logvar = la.LinearWN(512, self.n_embs)
self.apply(weights_initializer(0.2))
self.mu.apply(weights_initializer(1.0))
self.logvar.apply(weights_initializer(1.0))
# TODO: compute_losses()?
def forward(self, face_geom: th.Tensor, face_tex: th.Tensor, **kwargs):
B = face_geom.shape[0]
tex_cond = F.interpolate(
face_tex, (self.uv_size, self.uv_size), mode="bilinear", align_corners=False
)
tex_cond = (tex_cond / 255.0 - 0.5) * self.tex_cond_mask
x = self.conv_blocks(tex_cond)
tex_enc = x.reshape(B, 4 * 4 * 128)
geom_enc = self.geommod(face_geom.reshape(B, -1))
x = self.jointmod(th.cat([tex_enc, geom_enc], dim=1))
embs_mu = self.mu(x)
embs_logvar = self.logvar_scale * self.logvar(x)
# NOTE: the noise is only applied to the input-conditioned values
if self.training:
noise = th.randn_like(embs_mu)
embs = embs_mu + th.exp(embs_logvar) * noise * self.noise_std
else:
embs = embs_mu.clone()
preds = {"embs": embs, "embs_mu": embs_mu, "embs_logvar": embs_logvar, "tex_cond": tex_cond}
preds = {f"{self.prefix}{k}": v for k, v in preds.items()}
return preds
class UNetViewDecoder(nn.Module):
def __init__(self, geo_fn, net_uv_size, seam_sampler, n_init_ftrs=8):
super().__init__()
self.geo_fn = geo_fn
self.net_uv_size = net_uv_size
self.unet = UNetWB(4, 3, n_init_ftrs=n_init_ftrs, size=net_uv_size)
self.register_buffer("faces", self.geo_fn.vi.to(th.int64), persistent=False)
def forward(self, geom_rec, tex_mean_rec, camera_pos):
with th.no_grad():
view_cos = compute_view_cos(geom_rec, self.faces, camera_pos)
view_cos_uv = self.geo_fn.to_uv(view_cos[..., np.newaxis])
cond_view = th.cat([view_cos_uv, tex_mean_rec], dim=1)
tex_view = self.unet(cond_view)
# TODO: should we try warping here?
return {"tex_view_rec": tex_view, "cond_view": cond_view}
class UpscaleNet(nn.Module):
def __init__(self, in_channels, out_channels, n_ftrs, size=1024, upscale_factor=2):
super().__init__()
self.conv_block = nn.Sequential(
la.Conv2dWNUB(in_channels, n_ftrs, size, size, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, inplace=True),
)
self.out_block = la.Conv2dWNUB(
n_ftrs,
out_channels * upscale_factor**2,
size,
size,
kernel_size=1,
padding=0,
)
self.pixel_shuffle = nn.PixelShuffle(upscale_factor=upscale_factor)
self.apply(weights_initializer(0.2))
self.out_block.apply(weights_initializer(1.0))
def forward(self, x):
x = self.conv_block(x)
x = self.out_block(x)
return self.pixel_shuffle(x) |