File size: 25,319 Bytes
882f6e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

import logging
from typing import Dict, Optional, Tuple

import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F

from torchvision.utils import make_grid
from torchvision.transforms.functional import gaussian_blur

import visualize.ca_body.nn.layers as la

from visualize.ca_body.nn.blocks import (
    ConvBlock,
    ConvDownBlock,
    UpConvBlockDeep,
    tile2d,
    weights_initializer,
)
from visualize.ca_body.nn.dof_cal import LearnableBlur

from visualize.ca_body.utils.geom import (
    GeometryModule,
    compute_view_cos,
    depth_discontuity_mask,
    depth2normals,
)

from visualize.ca_body.nn.shadow import ShadowUNet, PoseToShadow
from visualize.ca_body.nn.unet import UNetWB
from visualize.ca_body.nn.color_cal import CalV5

from visualize.ca_body.utils.image import linear2displayBatch
from visualize.ca_body.utils.lbs import LBSModule
from visualize.ca_body.utils.render import RenderLayer
from visualize.ca_body.utils.seams import SeamSampler
from visualize.ca_body.utils.render import RenderLayer

from visualize.ca_body.nn.face import FaceDecoderFrontal

logger = logging.getLogger(__name__)


class CameraPixelBias(nn.Module):
    def __init__(self, image_height, image_width, cameras, ds_rate) -> None:
        super().__init__()
        self.image_height = image_height
        self.image_width = image_width
        self.cameras = cameras
        self.n_cameras = len(cameras)

        bias = th.zeros(
            (self.n_cameras, 1, image_width // ds_rate, image_height // ds_rate), dtype=th.float32
        )
        self.register_parameter("bias", nn.Parameter(bias))

    def forward(self, idxs: th.Tensor):
        bias_up = F.interpolate(
            self.bias[idxs], size=(self.image_height, self.image_width), mode='bilinear'
        )
        return bias_up


class AutoEncoder(nn.Module):
    def __init__(
        self,
        encoder,
        decoder,
        decoder_view,
        encoder_face,
        # hqlp decoder to get the codes
        decoder_face,
        shadow_net,
        upscale_net,
        assets,
        pose_to_shadow=None,
        renderer=None,
        cal=None,
        pixel_cal=None,
        learn_blur: bool = True,
    ):
        super().__init__()
        # TODO: should we have a shared LBS here?

        self.geo_fn = GeometryModule(
            assets.topology.vi,
            assets.topology.vt,
            assets.topology.vti,
            assets.topology.v2uv,
            uv_size=1024,
            impaint=True,
        )

        self.lbs_fn = LBSModule(
            assets.lbs_model_json,
            assets.lbs_config_dict,
            assets.lbs_template_verts,
            assets.lbs_scale,
            assets.global_scaling,
        )

        self.seam_sampler = SeamSampler(assets.seam_data_1024)
        self.seam_sampler_2k = SeamSampler(assets.seam_data_2048)

        # joint tex -> body and clothes
        # TODO: why do we have a joint one in the first place?
        tex_mean = gaussian_blur(th.as_tensor(assets.tex_mean)[np.newaxis], kernel_size=11)
        self.register_buffer("tex_mean", F.interpolate(tex_mean, (2048, 2048), mode='bilinear'))

        # this is shared
        self.tex_std = assets.tex_var if 'tex_var' in assets else 64.0

        face_cond_mask = th.as_tensor(assets.face_cond_mask, dtype=th.float32)[
            np.newaxis, np.newaxis
        ]
        self.register_buffer("face_cond_mask", face_cond_mask)

        meye_mask = self.geo_fn.to_uv(
            th.as_tensor(assets.mouth_eyes_mask_geom[np.newaxis, :, np.newaxis])
        )
        meye_mask = F.interpolate(meye_mask, (2048, 2048), mode='bilinear')
        self.register_buffer("meye_mask", meye_mask)

        self.decoder = ConvDecoder(
            geo_fn=self.geo_fn,
            seam_sampler=self.seam_sampler,
            **decoder,
            assets=assets,
        )

        # embs for everything but face
        non_head_mask = 1.0 - assets.face_mask
        self.encoder = Encoder(
            geo_fn=self.geo_fn,
            mask=non_head_mask,
            **encoder,
        )
        self.encoder_face = FaceEncoder(
            assets=assets,
            **encoder_face,
        )

        # using face decoder to generate better conditioning
        decoder_face_ckpt_path = None
        if 'ckpt' in decoder_face:
            decoder_face_ckpt_path = decoder_face.pop('ckpt')
        self.decoder_face = FaceDecoderFrontal(assets=assets, **decoder_face)

        if decoder_face_ckpt_path is not None:
            self.decoder_face.load_state_dict(th.load(decoder_face_ckpt_path), strict=False)

        self.decoder_view = UNetViewDecoder(
            self.geo_fn,
            seam_sampler=self.seam_sampler,
            **decoder_view,
        )

        self.shadow_net = ShadowUNet(
            ao_mean=assets.ao_mean,
            interp_mode="bilinear",
            biases=False,
            **shadow_net,
        )

        self.pose_to_shadow_enabled = False
        if pose_to_shadow is not None:
            self.pose_to_shadow_enabled = True
            self.pose_to_shadow = PoseToShadow(**pose_to_shadow)

        self.upscale_net = UpscaleNet(
            in_channels=6, size=1024, upscale_factor=2, out_channels=3, **upscale_net
        )

        self.pixel_cal_enabled = False
        if pixel_cal is not None:
            self.pixel_cal_enabled = True
            self.pixel_cal = CameraPixelBias(**pixel_cal, cameras=assets.camera_ids)

        self.learn_blur_enabled = False
        if learn_blur:
            self.learn_blur_enabled = True
            self.learn_blur = LearnableBlur(assets.camera_ids)

        # training-only stuff
        self.cal_enabled = False
        if cal is not None:
            self.cal_enabled = True
            self.cal = CalV5(**cal, cameras=assets.camera_ids)

        self.rendering_enabled = False
        if renderer is not None:
            self.rendering_enabled = True
            self.renderer = RenderLayer(
                h=renderer.image_height,
                w=renderer.image_width,
                vt=self.geo_fn.vt,
                vi=self.geo_fn.vi,
                vti=self.geo_fn.vti,
                flip_uvs=False,
            )

    @th.jit.unused
    def compute_summaries(self, preds, batch):
        # TODO: switch to common summaries?
        # return compute_summaries_mesh(preds, batch)
        rgb = linear2displayBatch(preds['rgb'][:, :3])
        rgb_gt = linear2displayBatch(batch['image'])
        depth = preds['depth'][:, np.newaxis]
        mask = depth > 0.0
        normals = (
            255 * (1.0 - depth2normals(depth, batch['focal'], batch['princpt'])) / 2.0
        ) * mask
        grid_rgb = make_grid(rgb, nrow=16).permute(1, 2, 0).clip(0, 255).to(th.uint8)
        grid_rgb_gt = make_grid(rgb_gt, nrow=16).permute(1, 2, 0).clip(0, 255).to(th.uint8)
        grid_normals = make_grid(normals, nrow=16).permute(1, 2, 0).clip(0, 255).to(th.uint8)

        progress_image = th.cat([grid_rgb, grid_rgb_gt, grid_normals], dim=0)
        return {
            'progress_image': (progress_image, 'png'),
        }

    def forward_tex(self, tex_mean_rec, tex_view_rec, shadow_map):
        x = th.cat([tex_mean_rec, tex_view_rec], dim=1)
        tex_rec = tex_mean_rec + tex_view_rec

        tex_rec = self.seam_sampler.impaint(tex_rec)
        tex_rec = self.seam_sampler.resample(tex_rec)

        tex_rec = F.interpolate(tex_rec, size=(2048, 2048), mode="bilinear", align_corners=False)
        tex_rec = tex_rec + self.upscale_net(x)

        tex_rec = tex_rec * self.tex_std + self.tex_mean

        shadow_map = self.seam_sampler_2k.impaint(shadow_map)
        shadow_map = self.seam_sampler_2k.resample(shadow_map)
        shadow_map = self.seam_sampler_2k.resample(shadow_map)

        tex_rec = tex_rec * shadow_map

        tex_rec = self.seam_sampler_2k.impaint(tex_rec)
        tex_rec = self.seam_sampler_2k.resample(tex_rec)
        tex_rec = self.seam_sampler_2k.resample(tex_rec)

        return tex_rec

    def encode(self, geom: th.Tensor, lbs_motion: th.Tensor, face_embs_hqlp: th.Tensor):

        with th.no_grad():
            verts_unposed = self.lbs_fn.unpose(geom, lbs_motion)
            verts_unposed_uv = self.geo_fn.to_uv(verts_unposed)

        # extract face region for geom + tex
        enc_preds = self.encoder(motion=lbs_motion, verts_unposed=verts_unposed)
        # TODO: probably need to rename these to `face_embs_mugsy` or smth
        # TODO: we need the same thing for face?
        # enc_face_preds = self.encoder_face(verts_unposed_uv)
        with th.no_grad():
            face_dec_preds = self.decoder_face(face_embs_hqlp)
        enc_face_preds = self.encoder_face(**face_dec_preds)

        preds = {
            **enc_preds,
            **enc_face_preds,
            'face_dec_preds': face_dec_preds,
        }
        return preds

    def forward(
        self,
        # TODO: should we try using this as well for cond?
        lbs_motion: th.Tensor,
        campos: th.Tensor,
        geom: Optional[th.Tensor] = None,
        ao: Optional[th.Tensor] = None,
        K: Optional[th.Tensor] = None,
        Rt: Optional[th.Tensor] = None,
        image_bg: Optional[th.Tensor] = None,
        image: Optional[th.Tensor] = None,
        image_mask: Optional[th.Tensor] = None,
        embs: Optional[th.Tensor] = None,
        _index: Optional[Dict[str, th.Tensor]] = None,
        face_embs: Optional[th.Tensor] = None,
        embs_conv: Optional[th.Tensor] = None,
        tex_seg: Optional[th.Tensor] = None,
        encode=True,
        iteration: Optional[int] = None,
        **kwargs,
    ):
        B = lbs_motion.shape[0]

        if not th.jit.is_scripting() and encode:
            # NOTE: these are `face_embs_hqlp`
            enc_preds = self.encode(geom, lbs_motion, face_embs)
            embs = enc_preds['embs']
            # NOTE: these are `face_embs` in body space
            face_embs_body = enc_preds['face_embs']

        dec_preds = self.decoder(
            motion=lbs_motion,
            embs=embs,
            face_embs=face_embs_body,
            embs_conv=embs_conv,
        )

        geom_rec = self.lbs_fn.pose(dec_preds['geom_delta_rec'], lbs_motion)

        dec_view_preds = self.decoder_view(
            geom_rec=geom_rec,
            tex_mean_rec=dec_preds["tex_mean_rec"],
            camera_pos=campos,
        )

        # TODO: should we train an AO model?
        if self.training and self.pose_to_shadow_enabled:
            shadow_preds = self.shadow_net(ao_map=ao)
            pose_shadow_preds = self.pose_to_shadow(lbs_motion)
            shadow_preds['pose_shadow_map'] = pose_shadow_preds['shadow_map']
        elif self.pose_to_shadow_enabled:
            shadow_preds = self.pose_to_shadow(lbs_motion)
        else:
            shadow_preds = self.shadow_net(ao_map=ao)

        tex_rec = self.forward_tex(
            dec_preds["tex_mean_rec"],
            dec_view_preds["tex_view_rec"],
            shadow_preds["shadow_map"],
        )

        if not th.jit.is_scripting() and self.cal_enabled:
            tex_rec = self.cal(tex_rec, self.cal.name_to_idx(_index['camera']))

        preds = {
            'geom': geom_rec,
            'tex_rec': tex_rec,
            **dec_preds,
            **shadow_preds,
            **dec_view_preds,
        }

        if not th.jit.is_scripting() and encode:
            preds.update(**enc_preds)

        if not th.jit.is_scripting() and self.rendering_enabled:

            # NOTE: this is a reduced version tested for forward only
            renders = self.renderer(
                preds['geom'],
                tex_rec,
                K=K,
                Rt=Rt,
            )

            preds.update(rgb=renders['render'])

        if not th.jit.is_scripting() and self.learn_blur_enabled:
            preds['rgb'] = self.learn_blur(preds['rgb'], _index['camera'])
            preds['learn_blur_weights'] = self.learn_blur.reg(_index['camera'])

        if not th.jit.is_scripting() and self.pixel_cal_enabled:
            assert self.cal_enabled
            cam_idxs = self.cal.name_to_idx(_index['camera'])
            pixel_bias = self.pixel_cal(cam_idxs)
            preds['rgb'] = preds['rgb'] + pixel_bias

        return preds


class Encoder(nn.Module):
    """A joint encoder for tex and geometry."""

    def __init__(
        self,
        geo_fn,
        n_embs,
        noise_std,
        mask,
        logvar_scale=0.1,
    ):
        """Fixed-width conv encoder."""
        super().__init__()

        self.noise_std = noise_std
        self.n_embs = n_embs
        self.geo_fn = geo_fn
        self.logvar_scale = logvar_scale

        self.verts_conv = ConvDownBlock(3, 8, 512)

        mask = th.as_tensor(mask[np.newaxis, np.newaxis], dtype=th.float32)
        mask = F.interpolate(mask, size=(512, 512), mode='bilinear').to(th.bool)
        self.register_buffer("mask", mask)

        self.joint_conv_blocks = nn.Sequential(
            ConvDownBlock(8, 16, 256),
            ConvDownBlock(16, 32, 128),
            ConvDownBlock(32, 32, 64),
            ConvDownBlock(32, 64, 32),
            ConvDownBlock(64, 128, 16),
            ConvDownBlock(128, 128, 8),
            # ConvDownBlock(128, 128, 4),
        )

        # TODO: should we put initializer
        self.mu = la.LinearWN(4 * 4 * 128, self.n_embs)
        self.logvar = la.LinearWN(4 * 4 * 128, self.n_embs)

        self.apply(weights_initializer(0.2))
        self.mu.apply(weights_initializer(1.0))
        self.logvar.apply(weights_initializer(1.0))

    def forward(self, motion, verts_unposed):
        preds = {}

        B = motion.shape[0]

        # converting motion to the unposed
        verts_cond = (
            F.interpolate(self.geo_fn.to_uv(verts_unposed), size=(512, 512), mode='bilinear')
            * self.mask
        )
        verts_cond = self.verts_conv(verts_cond)

        # tex_cond = F.interpolate(tex_avg, size=(512, 512), mode='bilinear') * self.mask
        # tex_cond = self.tex_conv(tex_cond)
        # joint_cond = th.cat([verts_cond, tex_cond], dim=1)
        joint_cond = verts_cond
        x = self.joint_conv_blocks(joint_cond)
        x = x.reshape(B, -1)
        embs_mu = self.mu(x)
        embs_logvar = self.logvar_scale * self.logvar(x)

        # NOTE: the noise is only applied to the input-conditioned values
        if self.training:
            noise = th.randn_like(embs_mu)
            embs = embs_mu + th.exp(embs_logvar) * noise * self.noise_std
        else:
            embs = embs_mu.clone()

        preds.update(
            embs=embs,
            embs_mu=embs_mu,
            embs_logvar=embs_logvar,
        )

        return preds


class ConvDecoder(nn.Module):
    """Multi-region view-independent decoder."""

    def __init__(
        self,
        geo_fn,
        uv_size,
        seam_sampler,
        init_uv_size,
        n_pose_dims,
        n_pose_enc_channels,
        n_embs,
        n_embs_enc_channels,
        n_face_embs,
        n_init_channels,
        n_min_channels,
        assets,
    ):
        super().__init__()

        self.geo_fn = geo_fn

        self.uv_size = uv_size
        self.init_uv_size = init_uv_size
        self.n_pose_dims = n_pose_dims
        self.n_pose_enc_channels = n_pose_enc_channels
        self.n_embs = n_embs
        self.n_embs_enc_channels = n_embs_enc_channels
        self.n_face_embs = n_face_embs

        self.n_blocks = int(np.log2(self.uv_size // init_uv_size))
        self.sizes = [init_uv_size * 2**s for s in range(self.n_blocks + 1)]

        # TODO: just specify a sequence?
        self.n_channels = [
            max(n_init_channels // 2**b, n_min_channels) for b in range(self.n_blocks + 1)
        ]

        logger.info(f"ConvDecoder: n_channels = {self.n_channels}")

        self.local_pose_conv_block = ConvBlock(
            n_pose_dims,
            n_pose_enc_channels,
            init_uv_size,
            kernel_size=1,
            padding=0,
        )

        self.embs_fc = nn.Sequential(
            la.LinearWN(n_embs, 4 * 4 * 128),
            nn.LeakyReLU(0.2, inplace=True),
        )
        # TODO: should we switch to the basic version?
        self.embs_conv_block = nn.Sequential(
            UpConvBlockDeep(128, 128, 8),
            UpConvBlockDeep(128, 128, 16),
            UpConvBlockDeep(128, 64, 32),
            UpConvBlockDeep(64, n_embs_enc_channels, 64),
        )

        self.face_embs_fc = nn.Sequential(
            la.LinearWN(n_face_embs, 4 * 4 * 32),
            nn.LeakyReLU(0.2, inplace=True),
        )
        self.face_embs_conv_block = nn.Sequential(
            UpConvBlockDeep(32, 64, 8),
            UpConvBlockDeep(64, 64, 16),
            UpConvBlockDeep(64, n_embs_enc_channels, 32),
        )

        n_groups = 2

        self.joint_conv_block = ConvBlock(
            n_pose_enc_channels + n_embs_enc_channels,
            n_init_channels,
            self.init_uv_size,
        )

        self.conv_blocks = nn.ModuleList([])
        for b in range(self.n_blocks):
            self.conv_blocks.append(
                UpConvBlockDeep(
                    self.n_channels[b] * n_groups,
                    self.n_channels[b + 1] * n_groups,
                    self.sizes[b + 1],
                    groups=n_groups,
                ),
            )

        self.verts_conv = la.Conv2dWNUB(
            in_channels=self.n_channels[-1],
            out_channels=3,
            kernel_size=3,
            height=self.uv_size,
            width=self.uv_size,
            padding=1,
        )
        self.tex_conv = la.Conv2dWNUB(
            in_channels=self.n_channels[-1],
            out_channels=3,
            kernel_size=3,
            height=self.uv_size,
            width=self.uv_size,
            padding=1,
        )

        self.apply(weights_initializer(0.2))
        self.verts_conv.apply(weights_initializer(1.0))
        self.tex_conv.apply(weights_initializer(1.0))

        self.seam_sampler = seam_sampler

        # NOTE: removing head region from pose completely
        pose_cond_mask = th.as_tensor(
            assets.pose_cond_mask[np.newaxis] * (1 - assets.head_cond_mask[np.newaxis, np.newaxis]),
            dtype=th.int32,
        )
        self.register_buffer("pose_cond_mask", pose_cond_mask)
        face_cond_mask = th.as_tensor(assets.face_cond_mask, dtype=th.float32)[
            np.newaxis, np.newaxis
        ]
        self.register_buffer("face_cond_mask", face_cond_mask)

        body_cond_mask = th.as_tensor(assets.body_cond_mask, dtype=th.float32)[
            np.newaxis, np.newaxis
        ]
        self.register_buffer("body_cond_mask", body_cond_mask)

    def forward(self, motion, embs, face_embs, embs_conv: Optional[th.Tensor] = None):

        # processing pose
        pose = motion[:, 6:]

        B = pose.shape[0]

        non_head_mask = (self.body_cond_mask * (1.0 - self.face_cond_mask)).clip(0.0, 1.0)

        pose_masked = tile2d(pose, self.init_uv_size) * self.pose_cond_mask
        pose_conv = self.local_pose_conv_block(pose_masked) * non_head_mask

        # TODO: decoding properly?
        if embs_conv is None:
            embs_conv = self.embs_conv_block(self.embs_fc(embs).reshape(B, 128, 4, 4))

        face_conv = self.face_embs_conv_block(self.face_embs_fc(face_embs).reshape(B, 32, 4, 4))
        # merging embeddings with spatial masks
        embs_conv[:, :, 32:, :32] = (
            face_conv * self.face_cond_mask[:, :, 32:, :32]
            + embs_conv[:, :, 32:, :32] * non_head_mask[:, :, 32:, :32]
        )

        joint = th.cat([pose_conv, embs_conv], axis=1)
        joint = self.joint_conv_block(joint)

        x = th.cat([joint, joint], axis=1)
        for b in range(self.n_blocks):
            x = self.conv_blocks[b](x)

        # NOTE: here we do resampling at feature level
        x = self.seam_sampler.impaint(x)
        x = self.seam_sampler.resample(x)
        x = self.seam_sampler.resample(x)

        verts_features, tex_features = th.split(x, self.n_channels[-1], 1)

        verts_uv_delta_rec = self.verts_conv(verts_features)
        # TODO: need to get values
        verts_delta_rec = self.geo_fn.from_uv(verts_uv_delta_rec)
        tex_mean_rec = self.tex_conv(tex_features)

        preds = {
            'geom_delta_rec': verts_delta_rec,
            'geom_uv_delta_rec': verts_uv_delta_rec,
            'tex_mean_rec': tex_mean_rec,
            'embs_conv': embs_conv,
            'pose_conv': pose_conv,
        }

        return preds


class FaceEncoder(nn.Module):
    """A joint encoder for tex and geometry."""

    def __init__(
        self,
        noise_std,
        assets,
        n_embs=256,
        uv_size=512,
        logvar_scale=0.1,
        n_vert_in=7306 * 3,
        prefix="face_",
    ):

        """Fixed-width conv encoder."""
        super().__init__()

        # TODO:
        self.noise_std = noise_std
        self.n_embs = n_embs
        self.logvar_scale = logvar_scale
        self.prefix = prefix
        self.uv_size = uv_size

        assert self.uv_size == 512

        tex_cond_mask = assets.mugsy_face_mask[..., 0]
        tex_cond_mask = th.as_tensor(tex_cond_mask, dtype=th.float32)[np.newaxis, np.newaxis]
        tex_cond_mask = F.interpolate(
            tex_cond_mask, (self.uv_size, self.uv_size), mode="bilinear", align_corners=True
        )
        self.register_buffer("tex_cond_mask", tex_cond_mask)

        self.conv_blocks = nn.Sequential(
            ConvDownBlock(3, 4, 512),
            ConvDownBlock(4, 8, 256),
            ConvDownBlock(8, 16, 128),
            ConvDownBlock(16, 32, 64),
            ConvDownBlock(32, 64, 32),
            ConvDownBlock(64, 128, 16),
            ConvDownBlock(128, 128, 8),
        )
        self.geommod = nn.Sequential(la.LinearWN(n_vert_in, 256), nn.LeakyReLU(0.2, inplace=True))
        self.jointmod = nn.Sequential(
            la.LinearWN(256 + 128 * 4 * 4, 512), nn.LeakyReLU(0.2, inplace=True)
        )
        # TODO: should we put initializer
        self.mu = la.LinearWN(512, self.n_embs)
        self.logvar = la.LinearWN(512, self.n_embs)

        self.apply(weights_initializer(0.2))
        self.mu.apply(weights_initializer(1.0))
        self.logvar.apply(weights_initializer(1.0))

    # TODO: compute_losses()?

    def forward(self, face_geom: th.Tensor, face_tex: th.Tensor, **kwargs):
        B = face_geom.shape[0]

        tex_cond = F.interpolate(
            face_tex, (self.uv_size, self.uv_size), mode="bilinear", align_corners=False
        )
        tex_cond = (tex_cond / 255.0 - 0.5) * self.tex_cond_mask
        x = self.conv_blocks(tex_cond)
        tex_enc = x.reshape(B, 4 * 4 * 128)

        geom_enc = self.geommod(face_geom.reshape(B, -1))

        x = self.jointmod(th.cat([tex_enc, geom_enc], dim=1))
        embs_mu = self.mu(x)
        embs_logvar = self.logvar_scale * self.logvar(x)

        # NOTE: the noise is only applied to the input-conditioned values
        if self.training:
            noise = th.randn_like(embs_mu)
            embs = embs_mu + th.exp(embs_logvar) * noise * self.noise_std
        else:
            embs = embs_mu.clone()

        preds = {"embs": embs, "embs_mu": embs_mu, "embs_logvar": embs_logvar, "tex_cond": tex_cond}
        preds = {f"{self.prefix}{k}": v for k, v in preds.items()}
        return preds


class UNetViewDecoder(nn.Module):
    def __init__(self, geo_fn, net_uv_size, seam_sampler, n_init_ftrs=8):
        super().__init__()
        self.geo_fn = geo_fn
        self.net_uv_size = net_uv_size
        self.unet = UNetWB(4, 3, n_init_ftrs=n_init_ftrs, size=net_uv_size)
        self.register_buffer("faces", self.geo_fn.vi.to(th.int64), persistent=False)

    def forward(self, geom_rec, tex_mean_rec, camera_pos):

        with th.no_grad():
            view_cos = compute_view_cos(geom_rec, self.faces, camera_pos)
            view_cos_uv = self.geo_fn.to_uv(view_cos[..., np.newaxis])
        cond_view = th.cat([view_cos_uv, tex_mean_rec], dim=1)
        tex_view = self.unet(cond_view)
        # TODO: should we try warping here?
        return {"tex_view_rec": tex_view, "cond_view": cond_view}


class UpscaleNet(nn.Module):
    def __init__(self, in_channels, out_channels, n_ftrs, size=1024, upscale_factor=2):
        super().__init__()

        self.conv_block = nn.Sequential(
            la.Conv2dWNUB(in_channels, n_ftrs, size, size, kernel_size=3, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
        )

        self.out_block = la.Conv2dWNUB(
            n_ftrs,
            out_channels * upscale_factor**2,
            size,
            size,
            kernel_size=1,
            padding=0,
        )

        self.pixel_shuffle = nn.PixelShuffle(upscale_factor=upscale_factor)
        self.apply(weights_initializer(0.2))
        self.out_block.apply(weights_initializer(1.0))

    def forward(self, x):
        x = self.conv_block(x)
        x = self.out_block(x)
        return self.pixel_shuffle(x)