File size: 11,238 Bytes
882f6e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

import os

from typing import Callable, Dict, Union

import numpy as np
import torch
from data_loaders.get_data import get_dataset_loader, load_local_data
from diffusion.respace import SpacedDiffusion
from model.cfg_sampler import ClassifierFreeSampleModel
from model.diffusion import FiLMTransformer

from torch.utils.data import DataLoader
from utils.diff_parser_utils import generate_args
from utils.misc import fixseed, prGreen
from utils.model_util import create_model_and_diffusion, get_person_num, load_model


def _construct_template_variables(unconstrained: bool) -> (str,):
    row_file_template = "sample{:02d}.mp4"
    all_file_template = "samples_{:02d}_to_{:02d}.mp4"
    if unconstrained:
        sample_file_template = "row{:02d}_col{:02d}.mp4"
        sample_print_template = "[{} row #{:02d} column #{:02d} | -> {}]"
        row_file_template = row_file_template.replace("sample", "row")
        row_print_template = "[{} row #{:02d} | all columns | -> {}]"
        all_file_template = all_file_template.replace("samples", "rows")
        all_print_template = "[rows {:02d} to {:02d} | -> {}]"
    else:
        sample_file_template = "sample{:02d}_rep{:02d}.mp4"
        sample_print_template = '["{}" ({:02d}) | Rep #{:02d} | -> {}]'
        row_print_template = '[ "{}" ({:02d}) | all repetitions | -> {}]'
        all_print_template = "[samples {:02d} to {:02d} | all repetitions | -> {}]"

    return (
        sample_print_template,
        row_print_template,
        all_print_template,
        sample_file_template,
        row_file_template,
        all_file_template,
    )


def _replace_keyframes(
    model_kwargs: Dict[str, Dict[str, torch.Tensor]],
    model: Union[FiLMTransformer, ClassifierFreeSampleModel],
) -> torch.Tensor:
    B, T = (
        model_kwargs["y"]["keyframes"].shape[0],
        model_kwargs["y"]["keyframes"].shape[1],
    )
    with torch.no_grad():
        tokens = model.transformer.generate(
            model_kwargs["y"]["audio"],
            T,
            layers=model.tokenizer.residual_depth,
            n_sequences=B,
        )
    tokens = tokens.reshape((B, -1, model.tokenizer.residual_depth))
    pred = model.tokenizer.decode(tokens).detach().cpu()
    assert (
        model_kwargs["y"]["keyframes"].shape == pred.shape
    ), f"{model_kwargs['y']['keyframes'].shape} vs {pred.shape}"
    return pred


def _run_single_diffusion(
    args,
    model_kwargs: Dict[str, Dict[str, torch.Tensor]],
    diffusion: SpacedDiffusion,
    model: Union[FiLMTransformer, ClassifierFreeSampleModel],
    inv_transform: Callable,
    gt: torch.Tensor,
) -> (torch.Tensor,):
    if args.data_format == "pose" and args.resume_trans is not None:
        model_kwargs["y"]["keyframes"] = _replace_keyframes(model_kwargs, model)

    sample_fn = diffusion.ddim_sample_loop
    with torch.no_grad():
        sample = sample_fn(
            model,
            (args.batch_size, model.nfeats, 1, args.curr_seq_length),
            clip_denoised=False,
            model_kwargs=model_kwargs,
            init_image=None,
            progress=True,
            dump_steps=None,
            noise=None,
            const_noise=False,
        )
    sample = inv_transform(sample.cpu().permute(0, 2, 3, 1), args.data_format).permute(
        0, 3, 1, 2
    )
    curr_audio = inv_transform(model_kwargs["y"]["audio"].cpu().numpy(), "audio")
    keyframes = inv_transform(model_kwargs["y"]["keyframes"], args.data_format)
    gt_seq = inv_transform(gt.cpu().permute(0, 2, 3, 1), args.data_format).permute(
        0, 3, 1, 2
    )

    return sample, curr_audio, keyframes, gt_seq


def _generate_sequences(
    args,
    model_kwargs: Dict[str, Dict[str, torch.Tensor]],
    diffusion: SpacedDiffusion,
    model: Union[FiLMTransformer, ClassifierFreeSampleModel],
    test_data: torch.Tensor,
    gt: torch.Tensor,
) -> Dict[str, np.ndarray]:
    all_motions = []
    all_lengths = []
    all_audio = []
    all_gt = []
    all_keyframes = []

    for rep_i in range(args.num_repetitions):
        print(f"### Sampling [repetitions #{rep_i}]")
        # add CFG scale to batch
        if args.guidance_param != 1:
            model_kwargs["y"]["scale"] = (
                torch.ones(args.batch_size, device=args.device) * args.guidance_param
            )
        model_kwargs["y"] = {
            key: val.to(args.device) if torch.is_tensor(val) else val
            for key, val in model_kwargs["y"].items()
        }
        sample, curr_audio, keyframes, gt_seq = _run_single_diffusion(
            args, model_kwargs, diffusion, model, test_data.dataset.inv_transform, gt
        )
        all_motions.append(sample.cpu().numpy())
        all_audio.append(curr_audio)
        all_keyframes.append(keyframes.cpu().numpy())
        all_gt.append(gt_seq.cpu().numpy())
        all_lengths.append(model_kwargs["y"]["lengths"].cpu().numpy())

        print(f"created {len(all_motions) * args.batch_size} samples")

    return {
        "motions": np.concatenate(all_motions, axis=0),
        "audio": np.concatenate(all_audio, axis=0),
        "gt": np.concatenate(all_gt, axis=0),
        "lengths": np.concatenate(all_lengths, axis=0),
        "keyframes": np.concatenate(all_keyframes, axis=0),
    }


def _render_pred(
    args,
    data_block: Dict[str, torch.Tensor],
    sample_file_template: str,
    audio_per_frame: int,
) -> None:
    from visualize.render_codes import BodyRenderer

    face_codes = None
    if args.face_codes is not None:
        face_codes = np.load(args.face_codes, allow_pickle=True).item()
        face_motions = face_codes["motions"]
        face_gts = face_codes["gt"]
        face_audio = face_codes["audio"]

    config_base = f"./checkpoints/ca_body/data/{get_person_num(args.data_root)}"
    body_renderer = BodyRenderer(
        config_base=config_base,
        render_rgb=True,
    )

    for sample_i in range(args.num_samples):
        for rep_i in range(args.num_repetitions):
            idx = rep_i * args.batch_size + sample_i
            save_file = sample_file_template.format(sample_i, rep_i)
            animation_save_path = os.path.join(args.output_dir, save_file)
            # format data
            length = data_block["lengths"][idx]
            body_motion = (
                data_block["motions"][idx].transpose(2, 0, 1)[:length].squeeze(-1)
            )
            face_motion = face_motions[idx].transpose(2, 0, 1)[:length].squeeze(-1)
            assert np.array_equal(
                data_block["audio"][idx], face_audio[idx]
            ), "face audio is not the same"
            audio = data_block["audio"][idx, : length * audio_per_frame, :].T
            # set up render data block to pass into renderer
            render_data_block = {
                "audio": audio,
                "body_motion": body_motion,
                "face_motion": face_motion,
            }
            if args.render_gt:
                gt_body = data_block["gt"][idx].transpose(2, 0, 1)[:length].squeeze(-1)
                gt_face = face_gts[idx].transpose(2, 0, 1)[:length].squeeze(-1)
                render_data_block["gt_body"] = gt_body
                render_data_block["gt_face"] = gt_face
            body_renderer.render_full_video(
                render_data_block,
                animation_save_path,
                audio_sr=audio_per_frame * 30,
                render_gt=args.render_gt,
            )


def _reset_sample_args(args) -> None:
    # set the sequence length to match the one specified by user
    name = os.path.basename(os.path.dirname(args.model_path))
    niter = os.path.basename(args.model_path).replace("model", "").replace(".pt", "")
    args.curr_seq_length = (
        args.curr_seq_length
        if args.curr_seq_length is not None
        else args.max_seq_length
    )
    # add the resume predictor model path
    resume_trans_name = ""
    if args.data_format == "pose" and args.resume_trans is not None:
        resume_trans_parts = args.resume_trans.split("/")
        resume_trans_name = f"{resume_trans_parts[1]}_{resume_trans_parts[-1]}"
    # reformat the output directory
    args.output_dir = os.path.join(
        os.path.dirname(args.model_path),
        "samples_{}_{}_seed{}_{}".format(name, niter, args.seed, resume_trans_name),
    )
    assert (
        args.num_samples <= args.batch_size
    ), f"Please either increase batch_size({args.batch_size}) or reduce num_samples({args.num_samples})"
    # set the batch size to match the number of samples to generate
    args.batch_size = args.num_samples


def _setup_dataset(args) -> DataLoader:
    data_root = args.data_root
    data_dict = load_local_data(
        data_root,
        audio_per_frame=1600,
        flip_person=args.flip_person,
    )
    test_data = get_dataset_loader(
        args=args,
        data_dict=data_dict,
        split="test",
        chunk=True,
    )
    return test_data


def _setup_model(
    args,
) -> (Union[FiLMTransformer, ClassifierFreeSampleModel], SpacedDiffusion):
    model, diffusion = create_model_and_diffusion(args, split_type="test")
    print(f"Loading checkpoints from [{args.model_path}]...")
    state_dict = torch.load(args.model_path, map_location="cpu")
    load_model(model, state_dict)

    if not args.unconstrained:
        assert args.guidance_param != 1

    if args.guidance_param != 1:
        prGreen("[CFS] wrapping model in classifier free sample")
        model = ClassifierFreeSampleModel(model)
    model.to(args.device)
    model.eval()
    return model, diffusion


def main():
    args = generate_args()
    fixseed(args.seed)
    _reset_sample_args(args)

    print("Loading dataset...")
    test_data = _setup_dataset(args)
    iterator = iter(test_data)

    print("Creating model and diffusion...")
    model, diffusion = _setup_model(args)

    if args.pose_codes is None:
        # generate sequences
        gt, model_kwargs = next(iterator)
        data_block = _generate_sequences(
            args, model_kwargs, diffusion, model, test_data, gt
        )
        os.makedirs(args.output_dir, exist_ok=True)
        npy_path = os.path.join(args.output_dir, "results.npy")
        print(f"saving results file to [{npy_path}]")
        np.save(npy_path, data_block)
    else:
        # load the pre generated results
        data_block = np.load(args.pose_codes, allow_pickle=True).item()

    # plot function only if face_codes exist and we are on pose prediction
    if args.plot:
        assert args.face_codes is not None, "need body and faces"
        assert (
            args.data_format == "pose"
        ), "currently only supporting plot on pose stuff"
        print(f"saving visualizations to [{args.output_dir}]...")
        _, _, _, sample_file_template, _, _ = _construct_template_variables(
            args.unconstrained
        )
        _render_pred(
            args,
            data_block,
            sample_file_template,
            test_data.dataset.audio_per_frame,
        )


if __name__ == "__main__":
    main()