Spaces:
Runtime error
Runtime error
File size: 11,238 Bytes
882f6e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
from typing import Callable, Dict, Union
import numpy as np
import torch
from data_loaders.get_data import get_dataset_loader, load_local_data
from diffusion.respace import SpacedDiffusion
from model.cfg_sampler import ClassifierFreeSampleModel
from model.diffusion import FiLMTransformer
from torch.utils.data import DataLoader
from utils.diff_parser_utils import generate_args
from utils.misc import fixseed, prGreen
from utils.model_util import create_model_and_diffusion, get_person_num, load_model
def _construct_template_variables(unconstrained: bool) -> (str,):
row_file_template = "sample{:02d}.mp4"
all_file_template = "samples_{:02d}_to_{:02d}.mp4"
if unconstrained:
sample_file_template = "row{:02d}_col{:02d}.mp4"
sample_print_template = "[{} row #{:02d} column #{:02d} | -> {}]"
row_file_template = row_file_template.replace("sample", "row")
row_print_template = "[{} row #{:02d} | all columns | -> {}]"
all_file_template = all_file_template.replace("samples", "rows")
all_print_template = "[rows {:02d} to {:02d} | -> {}]"
else:
sample_file_template = "sample{:02d}_rep{:02d}.mp4"
sample_print_template = '["{}" ({:02d}) | Rep #{:02d} | -> {}]'
row_print_template = '[ "{}" ({:02d}) | all repetitions | -> {}]'
all_print_template = "[samples {:02d} to {:02d} | all repetitions | -> {}]"
return (
sample_print_template,
row_print_template,
all_print_template,
sample_file_template,
row_file_template,
all_file_template,
)
def _replace_keyframes(
model_kwargs: Dict[str, Dict[str, torch.Tensor]],
model: Union[FiLMTransformer, ClassifierFreeSampleModel],
) -> torch.Tensor:
B, T = (
model_kwargs["y"]["keyframes"].shape[0],
model_kwargs["y"]["keyframes"].shape[1],
)
with torch.no_grad():
tokens = model.transformer.generate(
model_kwargs["y"]["audio"],
T,
layers=model.tokenizer.residual_depth,
n_sequences=B,
)
tokens = tokens.reshape((B, -1, model.tokenizer.residual_depth))
pred = model.tokenizer.decode(tokens).detach().cpu()
assert (
model_kwargs["y"]["keyframes"].shape == pred.shape
), f"{model_kwargs['y']['keyframes'].shape} vs {pred.shape}"
return pred
def _run_single_diffusion(
args,
model_kwargs: Dict[str, Dict[str, torch.Tensor]],
diffusion: SpacedDiffusion,
model: Union[FiLMTransformer, ClassifierFreeSampleModel],
inv_transform: Callable,
gt: torch.Tensor,
) -> (torch.Tensor,):
if args.data_format == "pose" and args.resume_trans is not None:
model_kwargs["y"]["keyframes"] = _replace_keyframes(model_kwargs, model)
sample_fn = diffusion.ddim_sample_loop
with torch.no_grad():
sample = sample_fn(
model,
(args.batch_size, model.nfeats, 1, args.curr_seq_length),
clip_denoised=False,
model_kwargs=model_kwargs,
init_image=None,
progress=True,
dump_steps=None,
noise=None,
const_noise=False,
)
sample = inv_transform(sample.cpu().permute(0, 2, 3, 1), args.data_format).permute(
0, 3, 1, 2
)
curr_audio = inv_transform(model_kwargs["y"]["audio"].cpu().numpy(), "audio")
keyframes = inv_transform(model_kwargs["y"]["keyframes"], args.data_format)
gt_seq = inv_transform(gt.cpu().permute(0, 2, 3, 1), args.data_format).permute(
0, 3, 1, 2
)
return sample, curr_audio, keyframes, gt_seq
def _generate_sequences(
args,
model_kwargs: Dict[str, Dict[str, torch.Tensor]],
diffusion: SpacedDiffusion,
model: Union[FiLMTransformer, ClassifierFreeSampleModel],
test_data: torch.Tensor,
gt: torch.Tensor,
) -> Dict[str, np.ndarray]:
all_motions = []
all_lengths = []
all_audio = []
all_gt = []
all_keyframes = []
for rep_i in range(args.num_repetitions):
print(f"### Sampling [repetitions #{rep_i}]")
# add CFG scale to batch
if args.guidance_param != 1:
model_kwargs["y"]["scale"] = (
torch.ones(args.batch_size, device=args.device) * args.guidance_param
)
model_kwargs["y"] = {
key: val.to(args.device) if torch.is_tensor(val) else val
for key, val in model_kwargs["y"].items()
}
sample, curr_audio, keyframes, gt_seq = _run_single_diffusion(
args, model_kwargs, diffusion, model, test_data.dataset.inv_transform, gt
)
all_motions.append(sample.cpu().numpy())
all_audio.append(curr_audio)
all_keyframes.append(keyframes.cpu().numpy())
all_gt.append(gt_seq.cpu().numpy())
all_lengths.append(model_kwargs["y"]["lengths"].cpu().numpy())
print(f"created {len(all_motions) * args.batch_size} samples")
return {
"motions": np.concatenate(all_motions, axis=0),
"audio": np.concatenate(all_audio, axis=0),
"gt": np.concatenate(all_gt, axis=0),
"lengths": np.concatenate(all_lengths, axis=0),
"keyframes": np.concatenate(all_keyframes, axis=0),
}
def _render_pred(
args,
data_block: Dict[str, torch.Tensor],
sample_file_template: str,
audio_per_frame: int,
) -> None:
from visualize.render_codes import BodyRenderer
face_codes = None
if args.face_codes is not None:
face_codes = np.load(args.face_codes, allow_pickle=True).item()
face_motions = face_codes["motions"]
face_gts = face_codes["gt"]
face_audio = face_codes["audio"]
config_base = f"./checkpoints/ca_body/data/{get_person_num(args.data_root)}"
body_renderer = BodyRenderer(
config_base=config_base,
render_rgb=True,
)
for sample_i in range(args.num_samples):
for rep_i in range(args.num_repetitions):
idx = rep_i * args.batch_size + sample_i
save_file = sample_file_template.format(sample_i, rep_i)
animation_save_path = os.path.join(args.output_dir, save_file)
# format data
length = data_block["lengths"][idx]
body_motion = (
data_block["motions"][idx].transpose(2, 0, 1)[:length].squeeze(-1)
)
face_motion = face_motions[idx].transpose(2, 0, 1)[:length].squeeze(-1)
assert np.array_equal(
data_block["audio"][idx], face_audio[idx]
), "face audio is not the same"
audio = data_block["audio"][idx, : length * audio_per_frame, :].T
# set up render data block to pass into renderer
render_data_block = {
"audio": audio,
"body_motion": body_motion,
"face_motion": face_motion,
}
if args.render_gt:
gt_body = data_block["gt"][idx].transpose(2, 0, 1)[:length].squeeze(-1)
gt_face = face_gts[idx].transpose(2, 0, 1)[:length].squeeze(-1)
render_data_block["gt_body"] = gt_body
render_data_block["gt_face"] = gt_face
body_renderer.render_full_video(
render_data_block,
animation_save_path,
audio_sr=audio_per_frame * 30,
render_gt=args.render_gt,
)
def _reset_sample_args(args) -> None:
# set the sequence length to match the one specified by user
name = os.path.basename(os.path.dirname(args.model_path))
niter = os.path.basename(args.model_path).replace("model", "").replace(".pt", "")
args.curr_seq_length = (
args.curr_seq_length
if args.curr_seq_length is not None
else args.max_seq_length
)
# add the resume predictor model path
resume_trans_name = ""
if args.data_format == "pose" and args.resume_trans is not None:
resume_trans_parts = args.resume_trans.split("/")
resume_trans_name = f"{resume_trans_parts[1]}_{resume_trans_parts[-1]}"
# reformat the output directory
args.output_dir = os.path.join(
os.path.dirname(args.model_path),
"samples_{}_{}_seed{}_{}".format(name, niter, args.seed, resume_trans_name),
)
assert (
args.num_samples <= args.batch_size
), f"Please either increase batch_size({args.batch_size}) or reduce num_samples({args.num_samples})"
# set the batch size to match the number of samples to generate
args.batch_size = args.num_samples
def _setup_dataset(args) -> DataLoader:
data_root = args.data_root
data_dict = load_local_data(
data_root,
audio_per_frame=1600,
flip_person=args.flip_person,
)
test_data = get_dataset_loader(
args=args,
data_dict=data_dict,
split="test",
chunk=True,
)
return test_data
def _setup_model(
args,
) -> (Union[FiLMTransformer, ClassifierFreeSampleModel], SpacedDiffusion):
model, diffusion = create_model_and_diffusion(args, split_type="test")
print(f"Loading checkpoints from [{args.model_path}]...")
state_dict = torch.load(args.model_path, map_location="cpu")
load_model(model, state_dict)
if not args.unconstrained:
assert args.guidance_param != 1
if args.guidance_param != 1:
prGreen("[CFS] wrapping model in classifier free sample")
model = ClassifierFreeSampleModel(model)
model.to(args.device)
model.eval()
return model, diffusion
def main():
args = generate_args()
fixseed(args.seed)
_reset_sample_args(args)
print("Loading dataset...")
test_data = _setup_dataset(args)
iterator = iter(test_data)
print("Creating model and diffusion...")
model, diffusion = _setup_model(args)
if args.pose_codes is None:
# generate sequences
gt, model_kwargs = next(iterator)
data_block = _generate_sequences(
args, model_kwargs, diffusion, model, test_data, gt
)
os.makedirs(args.output_dir, exist_ok=True)
npy_path = os.path.join(args.output_dir, "results.npy")
print(f"saving results file to [{npy_path}]")
np.save(npy_path, data_block)
else:
# load the pre generated results
data_block = np.load(args.pose_codes, allow_pickle=True).item()
# plot function only if face_codes exist and we are on pose prediction
if args.plot:
assert args.face_codes is not None, "need body and faces"
assert (
args.data_format == "pose"
), "currently only supporting plot on pose stuff"
print(f"saving visualizations to [{args.output_dir}]...")
_, _, _, sample_file_template, _, _ = _construct_template_variables(
args.unconstrained
)
_render_pred(
args,
data_block,
sample_file_template,
test_data.dataset.audio_per_frame,
)
if __name__ == "__main__":
main()
|