apsys's picture
new styling
50b05c6
"""
GuardBench Leaderboard Application
"""
import os
import json
import tempfile
import logging
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from apscheduler.schedulers.background import BackgroundScheduler
import numpy as np
from gradio.themes.utils import fonts, colors
from dataclasses import fields, dataclass
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
GUARDBENCH_COLUMN,
DISPLAY_COLS,
METRIC_COLS,
HIDDEN_COLS,
NEVER_HIDDEN_COLS,
CATEGORIES,
TEST_TYPES,
ModelType,
Mode,
Precision,
WeightType,
GuardModelType,
get_all_column_choices,
get_default_visible_columns,
)
from src.display.formatting import styled_message, styled_error, styled_warning
from src.envs import (
ADMIN_USERNAME,
ADMIN_PASSWORD,
RESULTS_DATASET_ID,
SUBMITTER_TOKEN,
TOKEN,
DATA_PATH,
)
from src.populate import get_leaderboard_df, get_category_leaderboard_df
from src.submission.submit import process_submission
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Ensure data directory exists
os.makedirs(DATA_PATH, exist_ok=True)
# Available benchmark versions
BENCHMARK_VERSIONS = ["v0"]
CURRENT_VERSION = "v0"
# Initialize leaderboard data
try:
logger.info("Initializing leaderboard data...")
LEADERBOARD_DF = get_leaderboard_df(version=CURRENT_VERSION)
logger.info(f"Loaded leaderboard with {len(LEADERBOARD_DF)} entries")
except Exception as e:
logger.error(f"Error loading leaderboard data: {e}")
LEADERBOARD_DF = pd.DataFrame()
custom_theme = gr.themes.Default(
primary_hue=colors.slate,
secondary_hue=colors.slate,
neutral_hue=colors.neutral,
font=(fonts.GoogleFont("Inter"), "sans-serif"),
).set(
# font_size="16px",
body_background_fill="#0f0f10",
body_background_fill_dark="#0f0f10",
body_text_color="#f4f4f5",
body_text_color_subdued="#a1a1aa",
block_background_fill="#1e1e1e", # Cooler Grey
block_border_color="#333333", # Cooler Grey
block_shadow="none",
# Swapped primary and secondary button styles
button_primary_background_fill="#121212", # Changed to specific color for Refresh button
button_primary_text_color="#f4f4f5",
button_primary_border_color="#333333", # Keep border grey or change to #121212?
button_secondary_background_fill="#f4f4f5",
button_secondary_text_color="#0f0f10",
button_secondary_border_color="#f4f4f5",
input_background_fill="#1e1e1e", # Cooler Grey
input_border_color="#333333", # Cooler Grey
input_placeholder_color="#71717a",
table_border_color="#333333", # Cooler Grey
table_even_background_fill="#2d2d2d", # Cooler Grey (Slightly lighter)
table_odd_background_fill="#1e1e1e", # Cooler Grey
table_text_color="#f4f4f5",
link_text_color="#ffffff",
border_color_primary="#333333", # Cooler Grey
background_fill_secondary="#333333", # Cooler Grey
color_accent="#f4f4f5",
border_color_accent="#333333", # Cooler Grey
button_primary_background_fill_hover="#424242", # Cooler Grey
block_title_text_color="#f4f4f5",
accordion_text_color="#f4f4f5",
panel_background_fill="#1e1e1e", # Cooler Grey
panel_border_color="#333333", # Cooler Grey
# Explicitly setting primary/secondary/accent colors/borders
background_fill_primary="#0f0f10",
background_fill_primary_dark="#0f0f10",
background_fill_secondary_dark="#333333", # Cooler Grey
border_color_primary_dark="#333333", # Cooler Grey
border_color_accent_dark="#333333", # Cooler Grey
border_color_accent_subdued="#424242", # Cooler Grey
border_color_accent_subdued_dark="#424242", # Cooler Grey
color_accent_soft="#a1a1aa",
color_accent_soft_dark="#a1a1aa",
# Explicitly setting input hover/focus states
input_background_fill_dark="#1e1e1e", # Cooler Grey
input_background_fill_focus="#424242", # Cooler Grey
input_background_fill_focus_dark="#424242", # Cooler Grey
input_background_fill_hover="#2d2d2d", # Cooler Grey
input_background_fill_hover_dark="#2d2d2d", # Cooler Grey
input_border_color_dark="#333333", # Cooler Grey
input_border_color_focus="#f4f4f5",
input_border_color_focus_dark="#f4f4f5",
input_border_color_hover="#424242", # Cooler Grey
input_border_color_hover_dark="#424242", # Cooler Grey
input_placeholder_color_dark="#71717a",
# Explicitly set dark variants for table backgrounds
table_even_background_fill_dark="#2d2d2d", # Cooler Grey
table_odd_background_fill_dark="#1e1e1e", # Cooler Grey
# Explicitly set dark text variants
body_text_color_dark="#f4f4f5",
body_text_color_subdued_dark="#a1a1aa",
block_title_text_color_dark="#f4f4f5",
accordion_text_color_dark="#f4f4f5",
table_text_color_dark="#f4f4f5",
# Explicitly set dark panel/block variants
panel_background_fill_dark="#1e1e1e", # Cooler Grey
panel_border_color_dark="#333333", # Cooler Grey
block_background_fill_dark="#1e1e1e", # Cooler Grey
block_border_color_dark="#333333", # Cooler Grey
)
@dataclass
class ColumnInfo:
"""Information about a column in the leaderboard."""
name: str
display_name: str
type: str = "text"
hidden: bool = False
never_hidden: bool = False
displayed_by_default: bool = True
def update_column_choices(df):
"""Update column choices based on what's actually in the dataframe"""
if df is None or df.empty:
return get_all_column_choices()
# Get columns that actually exist in the dataframe
existing_columns = list(df.columns)
# Get all possible columns with their display names
all_columns = get_all_column_choices()
# Filter to only include columns that exist in the dataframe
valid_columns = [
(col_name, display_name)
for col_name, display_name in all_columns
if col_name in existing_columns
]
# Return default if there are no valid columns
if not valid_columns:
return get_all_column_choices()
return valid_columns
# Update the column_selector initialization
def get_initial_columns():
"""Get initial columns to show in the dropdown"""
try:
# Get available columns in the main dataframe
available_cols = list(LEADERBOARD_DF.columns)
logger.info(f"Available columns in LEADERBOARD_DF: {available_cols}")
# If dataframe is empty, use default visible columns
if not available_cols:
return get_default_visible_columns()
# Get default visible columns that actually exist in the dataframe
valid_defaults = [
col for col in get_default_visible_columns() if col in available_cols
]
# If none of the defaults exist, return all available columns
if not valid_defaults:
return available_cols
return valid_defaults
except Exception as e:
logger.error(f"Error getting initial columns: {e}")
return get_default_visible_columns()
def init_leaderboard(dataframe, visible_columns=None):
"""
Initialize a standard Gradio Dataframe component for the leaderboard.
"""
if dataframe is None or dataframe.empty:
# Create an empty dataframe with the right columns
columns = [getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS]
dataframe = pd.DataFrame(columns=columns)
logger.warning("Initializing empty leaderboard")
# Lowercase model_name for display
if "model_name" in dataframe.columns:
dataframe = dataframe.copy()
dataframe["model_name"] = dataframe["model_name"].str.lower()
if "model_type" in dataframe.columns:
dataframe = dataframe.copy()
dataframe["model_type"] = dataframe["model_type"].str.replace(" : ", "-")
if "guard_model_type" in dataframe.columns:
dataframe = dataframe.copy()
dataframe["guard_model_type"] = dataframe["guard_model_type"].str.replace("wc_guard", "whitecircle_guard")
# print("\n\n", "dataframe", dataframe, "--------------------------------\n\n")
# Determine which columns to display
display_column_names = [
getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS
]
hidden_column_names = [getattr(GUARDBENCH_COLUMN, col).name for col in HIDDEN_COLS]
# Columns that should always be shown
always_visible = [getattr(GUARDBENCH_COLUMN, col).name for col in NEVER_HIDDEN_COLS]
# Use provided visible columns if specified, otherwise use default
if visible_columns is None:
# Determine which columns to show initially
visible_columns = [
col for col in display_column_names if col not in hidden_column_names
]
# Always include the never-hidden columns
for col in always_visible:
if col not in visible_columns and col in dataframe.columns:
visible_columns.append(col)
# Make sure we only include columns that actually exist in the dataframe
visible_columns = [col for col in visible_columns if col in dataframe.columns]
# Map GuardBench column types to Gradio's expected datatype strings
# Valid Gradio datatypes are: 'str', 'number', 'bool', 'date', 'markdown', 'html', 'image'
type_mapping = {
"text": "str",
"number": "number",
"bool": "bool",
"date": "date",
"markdown": "markdown",
"html": "html",
"image": "image",
}
# Create a list of datatypes in the format Gradio expects
datatypes = []
for col in visible_columns:
# Find the corresponding GUARDBENCH_COLUMN entry
col_type = None
for display_col in DISPLAY_COLS:
if getattr(GUARDBENCH_COLUMN, display_col).name == col:
orig_type = getattr(GUARDBENCH_COLUMN, display_col).type
# Map to Gradio's expected types
col_type = type_mapping.get(orig_type, "str")
break
# Default to 'str' if type not found or not mappable
if col_type is None:
col_type = "str"
datatypes.append(col_type)
# Create a dummy column for search functionality if it doesn't exist
if "search_dummy" not in dataframe.columns:
dataframe["search_dummy"] = dataframe.apply(
lambda row: " ".join(str(val) for val in row.values if pd.notna(val)),
axis=1,
)
# Select only the visible columns for display
visible_columns.remove("model_name")
visible_columns = ["model_name"] + visible_columns
display_df = dataframe[visible_columns].copy()
# print(f"--- DataFrame inside init_leaderboard (before rounding) ---")
# print(display_df[['model_name', 'macro_accuracy', 'macro_recall', 'total_evals_count']].head() if all(c in display_df.columns for c in ['model_name', 'macro_accuracy', 'macro_recall', 'total_evals_count']) else "Relevant columns not present")
# print(f"-------------------------------------------------------------")
# Round numeric columns to 3 decimal places for display
numeric_cols = display_df.select_dtypes(include=np.number).columns
for col in numeric_cols:
# Avoid rounding integer columns like counts
if not pd.api.types.is_integer_dtype(display_df[col]):
# Format floats to exactly 3 decimal places, preserving trailing zeros
display_df[col] = display_df[col].apply(
lambda x: f"{x:.3f}" if pd.notna(x) else None
)
column_info_map = {
f.name: getattr(GUARDBENCH_COLUMN, f.name) for f in fields(GUARDBENCH_COLUMN)
}
column_mapping = {
col: column_info_map.get(col, ColumnInfo(col, col)).display_name
for col in visible_columns
}
# Rename columns in the DataFrame
display_df.rename(columns=column_mapping, inplace=True)
# Apply styling - note: styling might need adjustment if it relies on column names
styler = display_df.style.set_properties(**{"text-align": "right"}).set_properties(
subset=["Model"], **{"width": "200px"}
)
return gr.Dataframe(
value=styler,
datatype=datatypes,
interactive=False,
wrap=True,
height=2500,
elem_id="leaderboard-table",
row_count=len(display_df),
)
def search_filter_leaderboard(
df, search_query="", model_types=None, version=CURRENT_VERSION
):
"""
Filter the leaderboard based on search query and model types.
"""
if df is None or df.empty:
return df
filtered_df = df.copy()
# Add search dummy column if it doesn't exist
if "search_dummy" not in filtered_df.columns:
filtered_df["search_dummy"] = filtered_df.apply(
lambda row: " ".join(str(val) for val in row.values if pd.notna(val)),
axis=1,
)
# Apply model type filter
if model_types and len(model_types) > 0:
filtered_df = filtered_df[
filtered_df[GUARDBENCH_COLUMN.model_type.name].isin(model_types)
]
# Apply search query
if search_query:
search_terms = [
term.strip() for term in search_query.split(";") if term.strip()
]
if search_terms:
combined_mask = None
for term in search_terms:
mask = filtered_df["search_dummy"].str.contains(
term, case=False, na=False
)
if combined_mask is None:
combined_mask = mask
else:
combined_mask = combined_mask | mask
if combined_mask is not None:
filtered_df = filtered_df[combined_mask]
# Drop the search dummy column before returning
visible_columns = [col for col in filtered_df.columns if col != "search_dummy"]
return filtered_df[visible_columns]
def refresh_data_with_filters(
version=CURRENT_VERSION, search_query="", model_types=None, selected_columns=None
):
"""
Refresh the leaderboard data and update all components with filtering.
Ensures we handle cases where dataframes might have limited columns.
"""
global LEADERBOARD_DF
try:
logger.info(f"Performing refresh of leaderboard data with filters...")
# Get new data
main_df = get_leaderboard_df(version=version)
LEADERBOARD_DF = main_df
category_dfs = [
get_category_leaderboard_df(category, version=version)
for category in CATEGORIES
]
selected_columns = [
x.lower()
.replace(" ", "_")
.replace("(", "")
.replace(")", "")
.replace("_recall", "_recall_binary")
.replace("_precision", "_precision_binary")
for x in selected_columns
]
# Log the actual columns we have
logger.info(f"Main dataframe columns: {list(main_df.columns)}")
# Apply filters to each dataframe
filtered_main_df = search_filter_leaderboard(
main_df, search_query, model_types, version
)
filtered_category_dfs = [
search_filter_leaderboard(df, search_query, model_types, version)
for df in category_dfs
]
# Get available columns from the dataframe
available_columns = list(filtered_main_df.columns)
# Filter selected columns to only those available in the data
if selected_columns:
# Convert display names to internal names first
internal_selected_columns = [
x.lower()
.replace(" ", "_")
.replace("(", "")
.replace(")", "")
.replace("_recall", "_recall_binary")
.replace("_precision", "_precision_binary")
for x in selected_columns
]
valid_selected_columns = [
col for col in internal_selected_columns if col in available_columns
]
if not valid_selected_columns and "model_name" in available_columns:
# Fallback if conversion/filtering leads to empty selection
valid_selected_columns = ["model_name"] + [
col
for col in get_default_visible_columns()
if col in available_columns
]
else:
# If no columns were selected in the dropdown, use default visible columns that exist
valid_selected_columns = [
col for col in get_default_visible_columns() if col in available_columns
]
# Initialize dataframes for display with valid selected columns
main_dataframe = init_leaderboard(filtered_main_df, valid_selected_columns)
# For category dataframes, get columns that actually exist in each one
category_dataframes = []
for df in filtered_category_dfs:
df_columns = list(df.columns)
df_valid_columns = [
col for col in valid_selected_columns if col in df_columns
]
if not df_valid_columns and "model_name" in df_columns:
df_valid_columns = ["model_name"] + get_default_visible_columns()
category_dataframes.append(init_leaderboard(df, df_valid_columns))
return main_dataframe, *category_dataframes
except Exception as e:
logger.error(f"Error in refresh with filters: {e}")
# Return the current leaderboards on error
return leaderboard, *[
tab.children[0] for tab in category_tabs.children[1 : len(CATEGORIES) + 1]
]
def submit_results(
model_name: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
mode: str,
submission_file: tempfile._TemporaryFileWrapper,
version: str,
guard_model_type: GuardModelType,
):
"""
Handle submission of results with model metadata.
"""
if submission_file is None:
return styled_error("No submission file provided")
if not model_name:
return styled_error("Model name is required")
if not model_type:
return styled_error("Please select a model type")
if not mode:
return styled_error("Please select an inference mode")
file_path = submission_file.name
logger.info(f"Received submission for model {model_name}: {file_path}")
# Add metadata to the submission
metadata = {
"model_name": model_name,
"base_model": base_model,
"revision": revision if revision else "main",
"precision": precision,
"weight_type": weight_type,
"model_type": model_type,
"mode": mode,
"version": version,
"guard_model_type": guard_model_type,
}
# Process the submission
result = process_submission(file_path, metadata, version=version)
# Refresh the leaderboard data
global LEADERBOARD_DF
try:
logger.info(
f"Refreshing leaderboard data after submission for version {version}..."
)
LEADERBOARD_DF = get_leaderboard_df(version=version)
logger.info("Refreshed leaderboard data after submission")
except Exception as e:
logger.error(f"Error refreshing leaderboard data: {e}")
return result
def refresh_data(version=CURRENT_VERSION):
"""
Refresh the leaderboard data and update all components.
"""
try:
logger.info(f"Performing scheduled refresh of leaderboard data...")
# Get new data
main_df = get_leaderboard_df(version=version)
category_dfs = [
get_category_leaderboard_df(category, version=version)
for category in CATEGORIES
]
# For gr.Dataframe, we return the actual dataframes
return main_df, *category_dfs
except Exception as e:
logger.error(f"Error in scheduled refresh: {e}")
return None, *[None for _ in CATEGORIES]
def update_leaderboards(version):
"""
Update all leaderboard components with data for the selected version.
"""
try:
new_df = get_leaderboard_df(version=version)
category_dfs = [
get_category_leaderboard_df(category, version=version)
for category in CATEGORIES
]
return new_df, *category_dfs
except Exception as e:
logger.error(f"Error updating leaderboards for version {version}: {e}")
return None, *[None for _ in CATEGORIES]
def create_performance_plot(
selected_models, category, metric="f1_binary", version=CURRENT_VERSION
):
"""
Create a radar plot comparing model performance for selected models.
"""
if category == "All Results":
df = get_leaderboard_df(version=version)
else:
df = get_category_leaderboard_df(category, version=version)
if df.empty:
return go.Figure()
# Lowercase model_name in df and selected_models
df = df.copy()
df["model_name"] = df["model_name"].str.lower()
selected_models = [m.lower() for m in selected_models]
df = df[df["model_name"].isin(selected_models)]
metric_cols = [col for col in df.columns if metric in col]
fig = go.Figure()
colors = ["#8FCCCC", "#C2A4B6", "#98B4A6", "#B68F7C"]
for idx, model in enumerate(selected_models):
model_data = df[df["model_name"] == model]
if not model_data.empty:
values = model_data[metric_cols].values[0].tolist()
values = values + [values[0]]
categories = [col.replace(f"_{metric}", "") for col in metric_cols]
# Replace 'jailbreaked' with 'jailbroken' in categories
categories = [cat.replace('jailbreaked', 'jailbroken') for cat in categories]
categories = categories + [categories[0]]
fig.add_trace(
go.Scatterpolar(
r=values,
theta=categories,
name=model,
line_color=colors[idx % len(colors)],
fill="toself",
)
)
fig.update_layout(
paper_bgcolor="#000000",
plot_bgcolor="#000000",
font={"color": "#ffffff"},
title={
"text": f"{category} - {metric.upper()} Score Comparison",
"font": {"color": "#ffffff", "size": 24},
},
polar=dict(
bgcolor="#000000",
radialaxis=dict(
visible=True,
range=[0, 1],
gridcolor="#333333",
linecolor="#333333",
tickfont={"color": "#ffffff"},
),
angularaxis=dict(
gridcolor="#333333",
linecolor="#333333",
tickfont={"color": "#ffffff"},
),
),
height=600,
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="right",
x=0.99,
bgcolor="rgba(0,0,0,0.5)",
font={"color": "#ffffff"},
),
)
return fig
def update_model_choices(version):
"""
Update the list of available models for the given version.
"""
df = get_leaderboard_df(version=version)
if df.empty:
return []
return sorted(df["model_name"].str.lower().unique().tolist())
def update_visualization(selected_models, selected_category, selected_metric, version):
"""
Update the visualization based on user selections.
"""
if not selected_models:
return go.Figure()
return create_performance_plot(
selected_models, selected_category, selected_metric, version
)
# Create Gradio app
demo = gr.Blocks(css=custom_css, theme=custom_theme)
CATEGORY_DISPLAY_MAP = {
"Political Corruption and Legal Evasion": "Corruption & Legal Evasion",
"Financial Fraud and Unethical Business": "Financial Fraud",
"AI Manipulation and Jailbreaking": "AI Jailbreaking",
"Child Exploitation and Abuse": "Child Exploitation",
"Hate Speech, Extremism, and Discrimination": "Hate Speech",
"Labor Exploitation and Human Trafficking": "Labor Exploitation",
"Manipulation, Deception, and Misinformation": "Misinformation",
"Environmental and Industrial Harm": "Environmental Harm",
"Academic Dishonesty and Cheating": "Academic Dishonesty",
"Self–Harm and Suicidal Ideation": "Self-Harm",
"Animal Cruelty and Exploitation": "Animal Harm",
"Criminal, Violent, and Terrorist Activity": "Crime & Violence",
"Drug– and Substance–Related Activities": "Drug Use",
"Sexual Content and Violence": "Sexual Content",
"Weapon, Explosives, and Hazardous Materials": "Weapons & Harmful Materials",
"Cybercrime, Hacking, and Digital Exploits": "Cybercrime",
"Creative Content Involving Illicit Themes": "Illicit Creative",
"Safe Prompts": "Safe Prompts",
}
# Create reverse mapping for lookups
CATEGORY_REVERSE_MAP = {v: k for k, v in CATEGORY_DISPLAY_MAP.items()}
with demo:
gr.HTML(TITLE)
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
tabs = gr.Tabs(elem_classes="tab-buttons")
with tabs:
with gr.TabItem("Leaderboard", elem_id="guardbench-leaderboard-tab", id=0):
with gr.Row():
version_selector = gr.Dropdown(
choices=BENCHMARK_VERSIONS,
label="Benchmark Version",
value=CURRENT_VERSION,
interactive=True,
elem_classes="version-selector",
scale=1,
visible=False,
)
with gr.Row():
search_input = gr.Textbox(
placeholder="Search by models (use ; to split)",
label="Search",
elem_id="search-bar",
scale=2,
)
model_type_filter = gr.Dropdown(
choices=[
t.to_str("-") for t in ModelType if t != ModelType.Unknown and t != ModelType.ClosedSource
],
label="Access Type",
multiselect=True,
value=[],
interactive=True,
scale=1,
)
column_selector = gr.Dropdown(
choices=get_all_column_choices(),
label="Columns",
multiselect=True,
value=get_initial_columns(),
interactive=True,
visible=False,
scale=1,
)
with gr.Row():
refresh_button = gr.Button(
"Refresh", scale=0, elem_id="refresh-button"
)
# Create tabs for each category
with gr.Tabs(elem_classes="category-tabs") as category_tabs:
# First tab for average metrics across all categories
with gr.TabItem("All Results", elem_id="overall-tab"):
leaderboard = init_leaderboard(LEADERBOARD_DF)
# Create a tab for each category using display names
for category in CATEGORIES:
display_name = CATEGORY_DISPLAY_MAP.get(category, category)
elem_id = f"category-{display_name.lower().replace(' ', '-').replace('&', 'and')}-tab"
with gr.TabItem(display_name, elem_id=elem_id):
category_df = get_category_leaderboard_df(
category, version=CURRENT_VERSION
)
category_leaderboard = init_leaderboard(category_df)
# Connect search and filter inputs to update function
def update_with_search_filters(
version=CURRENT_VERSION,
search_query="",
model_types=None,
selected_columns=None,
):
"""
Update the leaderboards with search and filter settings.
"""
return refresh_data_with_filters(
version, search_query, model_types, selected_columns
)
# Refresh button functionality
def refresh_and_update(
version, search_query, model_types, selected_columns
):
"""
Refresh data, update LEADERBOARD_DF, and return updated components.
"""
global LEADERBOARD_DF
main_df = get_leaderboard_df(version=version)
LEADERBOARD_DF = main_df # Update the global DataFrame
return refresh_data_with_filters(
version, search_query, model_types, selected_columns
)
refresh_button.click(
fn=refresh_and_update,
inputs=[
version_selector,
search_input,
model_type_filter,
column_selector,
],
outputs=[leaderboard]
+ [
category_tabs.children[i].children[0]
for i in range(1, len(CATEGORIES) + 1)
],
)
# Search input functionality
search_input.change(
fn=refresh_data_with_filters,
inputs=[
version_selector,
search_input,
model_type_filter,
column_selector,
],
outputs=[leaderboard]
+ [
category_tabs.children[i].children[0]
for i in range(1, len(CATEGORIES) + 1)
],
)
# Model type filter functionality
model_type_filter.change(
fn=refresh_data_with_filters,
inputs=[
version_selector,
search_input,
model_type_filter,
column_selector,
],
outputs=[leaderboard]
+ [
category_tabs.children[i].children[0]
for i in range(1, len(CATEGORIES) + 1)
],
)
# Version selector functionality
version_selector.change(
fn=refresh_data_with_filters,
inputs=[
version_selector,
search_input,
model_type_filter,
column_selector,
],
outputs=[leaderboard]
+ [
category_tabs.children[i].children[0]
for i in range(1, len(CATEGORIES) + 1)
],
)
# Update the update_columns function to handle updating all tabs at once
def update_columns(selected_columns):
"""
Update all leaderboards to show the selected columns.
Ensures all selected columns are preserved in the update.
"""
try:
logger.info(f"Updating columns to show: {selected_columns}")
# If no columns are selected, use default visible columns
if not selected_columns or len(selected_columns) == 0:
selected_columns = get_default_visible_columns()
logger.info(
f"No columns selected, using defaults: {selected_columns}"
)
# Convert display names to internal names
internal_selected_columns = [
x.lower()
.replace(" ", "_")
.replace("(", "")
.replace(")", "")
.replace("_recall", "_recall_binary")
.replace("_precision", "_precision_binary")
for x in selected_columns
]
# Get the current data with ALL columns preserved
main_df = get_leaderboard_df(version=version_selector.value)
# Get category dataframes with ALL columns preserved
category_dfs = [
get_category_leaderboard_df(
category, version=version_selector.value
)
for category in CATEGORIES
]
# Log columns for debugging
logger.info(f"Main dataframe columns: {list(main_df.columns)}")
logger.info(
f"Selected columns (internal): {internal_selected_columns}"
)
# IMPORTANT: Make sure model_name is always included
if (
"model_name" in main_df.columns
and "model_name" not in internal_selected_columns
):
internal_selected_columns = [
"model_name"
] + internal_selected_columns
# Initialize the main leaderboard with the selected columns
# We're passing the internal_selected_columns directly to preserve the selection
main_leaderboard = init_leaderboard(
main_df, internal_selected_columns
)
# Initialize category dataframes with the same selected columns
# This ensures consistency across all tabs
category_leaderboards = []
for df in category_dfs:
# Use the same selected columns for each category
# init_leaderboard will automatically handle filtering to columns that exist
category_leaderboards.append(
init_leaderboard(df, internal_selected_columns)
)
return main_leaderboard, *category_leaderboards
except Exception as e:
logger.error(f"Error updating columns: {e}")
import traceback
logger.error(traceback.format_exc())
return leaderboard, *[
tab.children[0]
for tab in category_tabs.children[1 : len(CATEGORIES) + 1]
]
# Connect column selector to update function
column_selector.change(
fn=update_columns,
inputs=[column_selector],
outputs=[leaderboard]
+ [
category_tabs.children[i].children[0]
for i in range(1, len(CATEGORIES) + 1)
],
)
with gr.TabItem("Visualize", elem_id="guardbench-viz-tab", id=1):
with gr.Row():
with gr.Column():
viz_version_selector = gr.Dropdown(
choices=BENCHMARK_VERSIONS,
label="Benchmark Version",
value=CURRENT_VERSION,
interactive=True,
visible=False,
)
# New: Mode selector
def get_model_mode_choices(version):
df = get_leaderboard_df(version=version)
if df.empty:
return []
return sorted([
f"{str(row['model_name']).lower()} [{row['mode']}]"
for _, row in df.drop_duplicates(subset=["model_name", "mode"]).iterrows()
])
model_mode_selector = gr.Dropdown(
choices=get_model_mode_choices(CURRENT_VERSION),
label="Select Model(s) [Mode] to Compare",
multiselect=True,
interactive=True,
)
with gr.Column():
# Add Overall Performance to categories, use display names
viz_categories_display = ["All Results"] + [
CATEGORY_DISPLAY_MAP.get(cat, cat) for cat in CATEGORIES
]
category_selector = gr.Dropdown(
choices=viz_categories_display,
label="Select Category",
value=viz_categories_display[0],
interactive=True,
)
metric_selector = gr.Dropdown(
choices=[
"accuracy",
"f1_binary",
"precision_binary",
"recall_binary",
"error_ratio",
],
label="Select Metric",
value="accuracy",
interactive=True,
)
plot_output = gr.Plot()
# Update visualization when any selector changes
def update_visualization_with_mode(
selected_model_modes, selected_category, selected_metric, version
):
if not selected_model_modes:
return go.Figure()
df = (
get_leaderboard_df(version=version)
if selected_category == "All Results"
else get_category_leaderboard_df(selected_category, version=version)
)
if df.empty:
return go.Figure()
df = df.copy()
df["model_name"] = df["model_name"].str.lower()
selected_pairs = [s.rsplit(" [", 1) for s in selected_model_modes]
selected_pairs = [
(name.strip().lower(), mode.strip("] "))
for name, mode in selected_pairs
]
mask = df.apply(
lambda row: (row["model_name"], str(row["mode"])) in selected_pairs,
axis=1,
)
filtered_df = df[mask]
metric_cols = [col for col in filtered_df.columns if selected_metric in col]
fig = go.Figure()
colors = ["#8FCCCC", "#C2A4B6", "#98B4A6", "#B68F7C"]
for idx, (model_name, mode) in enumerate(selected_pairs):
model_data = filtered_df[
(filtered_df["model_name"] == model_name)
& (filtered_df["mode"] == mode)
]
if not model_data.empty:
values = model_data[metric_cols].values[0].tolist()
values = values + [values[0]]
categories = [col.replace(f"_{selected_metric}", "") for col in metric_cols]
# Replace 'jailbreaked' with 'jailbroken' in categories
categories = [cat.replace('jailbreaked', 'jailbroken') for cat in categories]
categories = categories + [categories[0]]
fig.add_trace(
go.Scatterpolar(
r=values,
theta=categories,
name=f"{model_name} [{mode}]",
line_color=colors[idx % len(colors)],
fill="toself",
)
)
fig.update_layout(
paper_bgcolor="#000000",
plot_bgcolor="#000000",
font={"color": "#ffffff"},
title={
"text": f"{selected_category} - {selected_metric.upper()} Score Comparison",
"font": {"color": "#ffffff", "size": 24},
},
polar=dict(
bgcolor="#000000",
radialaxis=dict(
visible=True,
range=[0, 1],
gridcolor="#333333",
linecolor="#333333",
tickfont={"color": "#ffffff"},
),
angularaxis=dict(
gridcolor="#333333",
linecolor="#333333",
tickfont={"color": "#ffffff"},
),
),
height=600,
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="right",
x=0.99,
bgcolor="rgba(0,0,0,0.5)",
font={"color": "#ffffff"},
),
)
return fig
# Connect selectors to update function
for control in [
viz_version_selector,
model_mode_selector,
category_selector,
metric_selector,
]:
control.change(
fn=lambda smm, sc, s_metric, v: update_visualization_with_mode(
smm, CATEGORY_REVERSE_MAP.get(sc, sc), s_metric, v
),
inputs=[
model_mode_selector,
category_selector,
metric_selector,
viz_version_selector,
],
outputs=plot_output,
)
# Update model_mode_selector choices when version changes
viz_version_selector.change(
fn=get_model_mode_choices,
inputs=[viz_version_selector],
outputs=[model_mode_selector],
)
# with gr.TabItem("About", elem_id="guardbench-about-tab", id=2):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("Submit", elem_id="guardbench-submit-tab", id=3):
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
# with gr.Column(scale=3):
# gr.Markdown("# ✉️✨ Submit your results here!", elem_classes="markdown-text")
with gr.Column(scale=1):
# Add version selector specifically for the submission tab
submission_version_selector = gr.Dropdown(
choices=BENCHMARK_VERSIONS,
label="Benchmark Version",
value=CURRENT_VERSION,
interactive=True,
elem_classes="version-selector",
visible=False,
)
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
mode_selector = gr.Dropdown(
choices=[m.name for m in Mode],
label="Mode",
multiselect=False,
value=None,
interactive=True,
)
revision_name_textbox = gr.Textbox(
label="Revision commit", placeholder="main"
)
model_type = gr.Dropdown(
choices=[
t.to_str("-")
for t in ModelType
if t != ModelType.Unknown and t != ModelType.ClosedSource
],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
guard_model_type = gr.Dropdown(
choices=[t.name for t in GuardModelType],
label="Guard model type",
multiselect=False,
value=GuardModelType.LLM_REGEXP.name,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[
i.name for i in Precision if i != Precision.Unknown
],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(
label="Base model (for delta or adapter weights)"
)
with gr.Row():
file_input = gr.File(
label="Upload JSONL Results File", file_types=[".jsonl"]
)
submit_button = gr.Button("Submit Results")
result_output = gr.Markdown()
submit_button.click(
fn=submit_results,
inputs=[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
mode_selector,
file_input,
submission_version_selector,
guard_model_type,
],
outputs=result_output,
)
# Version selector functionality
version_selector.change(
fn=update_leaderboards,
inputs=[version_selector],
outputs=[leaderboard]
+ [
category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)
],
).then(
lambda version: refresh_data_with_filters(version),
inputs=[version_selector],
outputs=[leaderboard]
+ [
category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)
],
)
# Set up the scheduler to refresh data periodically
scheduler = BackgroundScheduler()
scheduler.add_job(refresh_data, "interval", minutes=30)
scheduler.start()
# Launch the app
if __name__ == "__main__":
demo.launch()