File size: 10,836 Bytes
d4d998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
 
 
 
d4d998a
 
 
3c01baa
d4d998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
 
d4d998a
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
 
 
 
 
 
3c01baa
 
d4d998a
3c01baa
d4d998a
3c01baa
 
d4d998a
 
 
3c01baa
 
d4d998a
 
 
3c01baa
d4d998a
 
 
3c01baa
d4d998a
 
 
 
 
3c01baa
 
d4d998a
 
 
3c01baa
 
 
 
 
 
 
 
 
 
d4d998a
 
 
 
 
 
 
3c01baa
 
 
 
 
 
 
 
 
 
 
 
 
d4d998a
 
 
3c01baa
d4d998a
 
 
 
 
3c01baa
d4d998a
 
 
3c01baa
d4d998a
3c01baa
d4d998a
 
 
3c01baa
 
d4d998a
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
 
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
 
 
 
 
 
 
 
3c01baa
 
d4d998a
 
 
3c01baa
 
 
 
 
 
 
 
d4d998a
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
 
3c01baa
d4d998a
3c01baa
d4d998a
 
 
 
3c01baa
d4d998a
 
 
 
3c01baa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""
GuardBench Leaderboard Application
"""

import os
import json
import tempfile
import logging
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    GUARDBENCH_COLUMN,
    DISPLAY_COLS,
    METRIC_COLS,
    HIDDEN_COLS,
    NEVER_HIDDEN_COLS,
    CATEGORIES,
    TEST_TYPES,
    ModelType,
    Precision,
    WeightType
)
from src.display.formatting import styled_message, styled_error, styled_warning
from src.envs import (
    ADMIN_USERNAME,
    ADMIN_PASSWORD,
    RESULTS_DATASET_ID,
    SUBMITTER_TOKEN,
    TOKEN,
    DATA_PATH
)
from src.populate import get_leaderboard_df, download_leaderboard_data, get_category_leaderboard_df
from src.submission.submit import process_submission

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Ensure data directory exists
os.makedirs(DATA_PATH, exist_ok=True)

# Available benchmark versions
BENCHMARK_VERSIONS = ["v0"]
CURRENT_VERSION = "v0"

# Initialize leaderboard data
try:
    logger.info("Initializing leaderboard data...")
    LEADERBOARD_DF = get_leaderboard_df(version=CURRENT_VERSION)
    logger.info(f"Loaded leaderboard with {len(LEADERBOARD_DF)} entries")
except Exception as e:
    logger.error(f"Error loading leaderboard data: {e}")
    LEADERBOARD_DF = pd.DataFrame()


def init_leaderboard(dataframe):
    """
    Initialize the leaderboard component.
    """
    if dataframe is None or dataframe.empty:
        # Create an empty dataframe with the right columns
        columns = [getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS]
        dataframe = pd.DataFrame(columns=columns)
        logger.warning("Initializing empty leaderboard")

    return Leaderboard(
        value=dataframe,
        datatype=[getattr(GUARDBENCH_COLUMN, col).type for col in DISPLAY_COLS],
        select_columns=SelectColumns(
            default_selection=[getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS],
            cant_deselect=[getattr(GUARDBENCH_COLUMN, col).name for col in NEVER_HIDDEN_COLS],
            label="Select Columns to Display:",
        ),
        search_columns=[GUARDBENCH_COLUMN.model_name.name],
        hide_columns=[getattr(GUARDBENCH_COLUMN, col).name for col in HIDDEN_COLS],
        filter_columns=[
            ColumnFilter(GUARDBENCH_COLUMN.model_type.name, type="checkboxgroup", label="Model types"),
        ],
        interactive=False,
    )


def submit_results(
    model_name: str,
    base_model: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str,
    submission_file: tempfile._TemporaryFileWrapper,
    version: str
):
    """
    Handle submission of results with model metadata.
    """
    if submission_file is None:
        return styled_error("No submission file provided")

    if not model_name:
        return styled_error("Model name is required")

    if not model_type:
        return styled_error("Please select a model type")

    file_path = submission_file.name
    logger.info(f"Received submission for model {model_name}: {file_path}")

    # Add metadata to the submission
    metadata = {
        "model_name": model_name,
        "base_model": base_model,
        "revision": revision if revision else "main",
        "precision": precision,
        "weight_type": weight_type,
        "model_type": model_type,
        "version": version
    }

    # Process the submission
    result = process_submission(file_path, metadata, version=version)

    # Refresh the leaderboard data
    global LEADERBOARD_DF
    try:
        logger.info(f"Refreshing leaderboard data after submission for version {version}...")
        LEADERBOARD_DF = get_leaderboard_df(version=version)
        logger.info("Refreshed leaderboard data after submission")
    except Exception as e:
        logger.error(f"Error refreshing leaderboard data: {e}")

    return result


def refresh_data(version=CURRENT_VERSION):
    """
    Refresh the leaderboard data from HuggingFace.
    """
    global LEADERBOARD_DF
    try:
        logger.info(f"Performing scheduled refresh of leaderboard data for version {version}...")
        LEADERBOARD_DF = get_leaderboard_df(version=version)
        logger.info("Scheduled refresh of leaderboard data completed")
    except Exception as e:
        logger.error(f"Error in scheduled refresh: {e}")
    return LEADERBOARD_DF


def update_leaderboards(version):
    """
    Update all leaderboard components with data for the selected version.
    """
    new_df = get_leaderboard_df(version=version)
    category_dfs = [get_category_leaderboard_df(category, version=version) for category in CATEGORIES]
    return [init_leaderboard(new_df)] + [init_leaderboard(df) for df in category_dfs]


# Create Gradio app
demo = gr.Blocks(css=custom_css)

with demo:
    gr.HTML(TITLE)

    with gr.Row():
        with gr.Column(scale=3):
            gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
        with gr.Column(scale=1):
            version_selector = gr.Dropdown(
                choices=BENCHMARK_VERSIONS,
                label="Benchmark Version",
                value=CURRENT_VERSION,
                interactive=True,
                elem_classes="version-selector"
            )

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 Leaderboard", elem_id="guardbench-leaderboard-tab", id=0):
            refresh_button = gr.Button("Refresh Leaderboard")

            # Create tabs for each category
            with gr.Tabs(elem_classes="category-tabs") as category_tabs:
                # First tab for average metrics across all categories
                with gr.TabItem("📊 Overall Performance", elem_id="overall-tab"):
                    leaderboard = init_leaderboard(LEADERBOARD_DF)

                # Create a tab for each category
                for category in CATEGORIES:
                    with gr.TabItem(f"{category}", elem_id=f"category-{category.lower().replace(' ', '-')}-tab"):
                        category_df = get_category_leaderboard_df(category, version=CURRENT_VERSION)
                        category_leaderboard = init_leaderboard(category_df)

            # Refresh button functionality
            refresh_button.click(
                fn=lambda: [
                    init_leaderboard(get_leaderboard_df(version=version_selector.value)),
                    *[init_leaderboard(get_category_leaderboard_df(category, version=version_selector.value)) for category in CATEGORIES]
                ],
                inputs=[],
                outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)]
            )

        with gr.TabItem("📝 About", elem_id="guardbench-about-tab", id=1):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit", elem_id="guardbench-submit-tab", id=2):
            gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your results here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            with gr.Row():
                file_input = gr.File(
                    label="Upload JSONL Results File",
                    file_types=[".jsonl"]
                )

            submit_button = gr.Button("Submit Results")
            result_output = gr.Markdown()

            submit_button.click(
                fn=submit_results,
                inputs=[
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                    file_input,
                    version_selector
                ],
                outputs=result_output
            )

    # Version selector functionality
    version_selector.change(
        fn=update_leaderboards,
        inputs=[version_selector],
        outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)]
    )

    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=10,
                elem_id="citation-button",
                show_copy_button=True,
            )

        with gr.Accordion("ℹ️ Dataset Information", open=False):
            dataset_info = gr.Markdown(f"""
            ## Dataset Information

            Results are stored in the HuggingFace dataset: [{RESULTS_DATASET_ID}](https://huggingface.co/datasets/{RESULTS_DATASET_ID})

            Last updated: {pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S UTC")}
            """)

scheduler = BackgroundScheduler()
scheduler.add_job(lambda: refresh_data(version=CURRENT_VERSION), 'interval', minutes=30)
scheduler.start()

# Launch the app
if __name__ == "__main__":

    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)