import torch from transformers import CodeT5ForCodeGeneration, CodeT5Tokenizer class CodeT5: def __init__(self): self.tokenizer = CodeT5Tokenizer.from_pretrained('Salesforce/codet5-base') self.model = CodeT5ForCodeGeneration.from_pretrained('Salesforce/codet5-base') def analyze(self, repo_data, github_api): if isinstance(repo_data, str): # Error handling from github_api return repo_data optimization_results = [] for file in repo_data: if file["type"] == "file" and file["name"].endswith((".py", ".js", ".java", ".c", ".cpp")): content = github_api.get_file_content(file["download_url"]) if isinstance(content, str) and content.startswith("Error"): #Error Handling for file content. optimization_results.append(f"{file['name']}: {content}") continue try: inputs = self.tokenizer.encode(content, return_tensors="pt", max_length=512, truncation=True) outputs = self.model.generate(inputs, max_length=256) decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True) optimization_results.append(f"{file['name']}: {decoded_output}") except Exception as e: optimization_results.append(f"{file['name']}: Error analyzing - {e}") return "\n".join(optimization_results)