|
import torch |
|
from transformers import CodeT5ForCodeGeneration, CodeT5Tokenizer |
|
|
|
class CodeT5: |
|
def __init__(self): |
|
self.tokenizer = CodeT5Tokenizer.from_pretrained('Salesforce/codet5-base') |
|
self.model = CodeT5ForCodeGeneration.from_pretrained('Salesforce/codet5-base') |
|
|
|
def analyze(self, repo_data, github_api): |
|
if isinstance(repo_data, str): |
|
return repo_data |
|
optimization_results = [] |
|
for file in repo_data: |
|
if file["type"] == "file" and file["name"].endswith((".py", ".js", ".java", ".c", ".cpp")): |
|
content = github_api.get_file_content(file["download_url"]) |
|
if isinstance(content, str) and content.startswith("Error"): |
|
optimization_results.append(f"{file['name']}: {content}") |
|
continue |
|
try: |
|
inputs = self.tokenizer.encode(content, return_tensors="pt", max_length=512, truncation=True) |
|
outputs = self.model.generate(inputs, max_length=256) |
|
decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
optimization_results.append(f"{file['name']}: {decoded_output}") |
|
except Exception as e: |
|
optimization_results.append(f"{file['name']}: Error analyzing - {e}") |
|
return "\n".join(optimization_results) |