Update README.md
Browse files
README.md
CHANGED
@@ -16,7 +16,149 @@ models:
|
|
16 |
[](https://www.python.org/downloads)
|
17 |
[](https://github.com/psf/black)
|
18 |
|
19 |
-
|
20 |
---
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
16 |
[](https://www.python.org/downloads)
|
17 |
[](https://github.com/psf/black)
|
18 |
|
|
|
19 |
---
|
20 |
|
21 |
+
# Mixture of Experts
|
22 |
+
|
23 |
+
Welcome to **Mixture of Experts** – a Hugging Face Space built to interact with advanced multimodal conversational AI using Gradio. This Space leverages the Aria-Chat model, which excels in handling open-ended, multi-round dialogs with text and image inputs.
|
24 |
+
|
25 |
+
## Key Features
|
26 |
+
|
27 |
+
- **Multimodal Interaction:** Seamlessly integrate text and image inputs for rich, conversational experiences.
|
28 |
+
- **Advanced Conversational Abilities:** Benefit from Aria-Chat’s fine-tuned performance in generating coherent and context-aware responses.
|
29 |
+
- **Optimized Performance:** Designed for reliable, long-format outputs, reducing common pitfalls like incomplete markdown or endless list outputs.
|
30 |
+
- **Multilingual Support:** Optimized to handle multiple languages including Chinese, Spanish, French, and Japanese.
|
31 |
+
|
32 |
+
## Quick Start
|
33 |
+
|
34 |
+
### Installation
|
35 |
+
|
36 |
+
To run the Space locally or to integrate into your workflow, ensure you have the following dependencies installed:
|
37 |
+
|
38 |
+
```bash
|
39 |
+
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow
|
40 |
+
pip install flash-attn --no-build-isolation
|
41 |
+
|
42 |
+
# Optionally, for improved inference performance:
|
43 |
+
pip install grouped_gemm==0.1.6
|
44 |
+
|
45 |
+
```
|
46 |
+
|
47 |
+
Usage
|
48 |
+
Below is a simple code snippet demonstrating how to interact with the Aria-Chat model. Customize it further to suit your integration needs:
|
49 |
+
|
50 |
+
```python
|
51 |
+
import requests
|
52 |
+
import torch
|
53 |
+
from PIL import Image
|
54 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
55 |
+
|
56 |
+
model_id_or_path = "rhymes-ai/Aria-Chat"
|
57 |
+
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(
|
59 |
+
model_id_or_path,
|
60 |
+
device_map="auto",
|
61 |
+
torch_dtype=torch.bfloat16,
|
62 |
+
trust_remote_code=True
|
63 |
+
)
|
64 |
+
|
65 |
+
processor = AutoProcessor.from_pretrained(
|
66 |
+
model_id_or_path,
|
67 |
+
trust_remote_code=True
|
68 |
+
)
|
69 |
+
|
70 |
+
# Example image input
|
71 |
+
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
72 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
73 |
+
|
74 |
+
# Prepare a conversation message
|
75 |
+
messages = [
|
76 |
+
{
|
77 |
+
"role": "user",
|
78 |
+
"content": [
|
79 |
+
{"text": None, "type": "image"},
|
80 |
+
{"text": "What is the image?", "type": "text"},
|
81 |
+
],
|
82 |
+
}
|
83 |
+
]
|
84 |
+
|
85 |
+
# Format text input with chat template
|
86 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
87 |
+
inputs = processor(text=text, images=image, return_tensors="pt")
|
88 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
|
89 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
90 |
+
|
91 |
+
# Generate the response
|
92 |
+
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
93 |
+
output = model.generate(
|
94 |
+
**inputs,
|
95 |
+
max_new_tokens=500,
|
96 |
+
stop_strings=["<|im_end|>"],
|
97 |
+
tokenizer=processor.tokenizer,
|
98 |
+
do_sample=True,
|
99 |
+
temperature=0.9,
|
100 |
+
)
|
101 |
+
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
102 |
+
result = processor.decode(output_ids, skip_special_tokens=True)
|
103 |
+
|
104 |
+
print(result)
|
105 |
+
```
|
106 |
+
|
107 |
+
### Running the Space with Gradio
|
108 |
+
Our Space leverages Gradio for an interactive web interface. Once the required dependencies are installed, simply run your Space to:
|
109 |
+
|
110 |
+
- Interact in real time with the multimodal capabilities of Aria-Chat.
|
111 |
+
- Test various inputs including images and text for a dynamic conversational experience.
|
112 |
+
|
113 |
+
## Advanced Usage
|
114 |
+
For more complex use cases:
|
115 |
+
|
116 |
+
- Fine-tuning: Check out our linked codebase for guidance on fine-tuning Aria-Chat on your custom datasets.
|
117 |
+
- vLLM Inference: Explore advanced inference options to optimize latency and throughput.
|
118 |
+
|
119 |
+
### Credits & Citation
|
120 |
+
If you find this work useful, please consider citing the Aria-Chat model:
|
121 |
+
|
122 |
+
```bibtex
|
123 |
+
Copy
|
124 |
+
Edit
|
125 |
+
@article{aria,
|
126 |
+
title={Aria: An Open Multimodal Native Mixture-of-Experts Model},
|
127 |
+
author={Dongxu Li and Yudong Liu and Haoning Wu and Yue Wang and Zhiqi Shen and Bowen Qu and Xinyao Niu and Guoyin Wang and Bei Chen and Junnan Li},
|
128 |
+
year={2024},
|
129 |
+
journal={arXiv preprint arXiv:2410.05993},
|
130 |
+
}
|
131 |
+
```
|
132 |
+
|
133 |
+
## License
|
134 |
+
This project is licensed under the Apache-2.0 License.
|
135 |
+
|
136 |
+
Happy chatting and expert mixing! If you encounter any issues or have suggestions, feel free to open an issue or contribute to the repository.Running the Space with Gradio
|
137 |
+
Our Space leverages Gradio for an interactive web interface. Once the required dependencies are installed, simply run your Space to:
|
138 |
+
|
139 |
+
- Interact in real time with the multimodal capabilities of Aria-Chat.
|
140 |
+
- Test various inputs including images and text for a dynamic conversational experience.
|
141 |
+
|
142 |
+
|
143 |
+
## Advanced Usage
|
144 |
+
For more complex use cases:
|
145 |
+
|
146 |
+
- Fine-tuning: Check out our linked codebase for guidance on fine-tuning Aria-Chat on your custom datasets.
|
147 |
+
vLLM Inference: Explore advanced inference options to optimize latency and throughput.
|
148 |
+
## Credits & Citation
|
149 |
+
If you find this work useful, please consider citing the Aria-Chat model:
|
150 |
+
|
151 |
+
bibtex
|
152 |
+
@article{aria,
|
153 |
+
title={Aria: An Open Multimodal Native Mixture-of-Experts Model},
|
154 |
+
author={Dongxu Li and Yudong Liu and Haoning Wu and Yue Wang and Zhiqi Shen and Bowen Qu and Xinyao Niu and Guoyin Wang and Bei Chen and Junnan Li},
|
155 |
+
year={2024},
|
156 |
+
journal={arXiv preprint arXiv:2410.05993},
|
157 |
+
}
|
158 |
+
|
159 |
+
## License
|
160 |
+
This project is licensed under the Apache-2.0 License.
|
161 |
+
|
162 |
+
Happy chatting and expert mixing! If you encounter any issues or have suggestions, feel free to open an issue or contribute to the repository.
|
163 |
+
|
164 |
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|