Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import CodeT5ForConditionalGeneration, CodeT5Tokenizer
|
4 |
+
|
5 |
+
# Load pre-trained CodeT5 model and tokenizer
|
6 |
+
model = CodeT5ForConditionalGeneration.from_pretrained("Salesforce/code-t5-small")
|
7 |
+
tokenizer = CodeT5Tokenizer.from_pretrained("Salesforce/code-t5-small")
|
8 |
+
|
9 |
+
def generate_code(prompt, code_file):
|
10 |
+
# Read uploaded code file
|
11 |
+
if code_file:
|
12 |
+
code_text = code_file.read().decode("utf-8")
|
13 |
+
else:
|
14 |
+
code_text = ""
|
15 |
+
|
16 |
+
# Tokenize input prompt
|
17 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
18 |
+
|
19 |
+
# Generate code using CodeT5 model
|
20 |
+
output = model.generate(input_ids=input_ids, max_length=256)
|
21 |
+
generated_code = tokenizer.decode(output[0], skip_special_tokens=True)
|
22 |
+
|
23 |
+
# Return generated code and code preview
|
24 |
+
return generated_code, f"```python\n{generated_code}\n```"
|
25 |
+
|
26 |
+
# Create Gradio interface
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=generate_code,
|
29 |
+
inputs=[
|
30 |
+
________gr.Textbox(label="Input_Prompt",_placeholder="Enter_a_prompt"),
|
31 |
+
________gr.Upload(label="Upload_Code_File",_file_types=["py"])
|
32 |
+
],
|
33 |
+
outputs=[
|
34 |
+
________gr.Textbox(label="Generated_Code"),
|
35 |
+
________gr.Code(label="Code_Preview",_language="python")
|
36 |
+
____],
|
37 |
+
title="Code Generation with CodeT5",
|
38 |
+
description="Generate Python code based on input prompt and uploaded code file."
|
39 |
+
)
|
40 |
+
|
41 |
+
# Launch Gradio interface
|
42 |
+
iface.launch()
|