# -*- coding: utf-8 -*- ################################################### # # Script to # - Calculate prediction of the test dataset # - Calculate the parameters to evaluate the prediction # ################################################## #Python import numpy as np from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score,f1_score,jaccard_score from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_recall_curve from lib.extract_patches2 import pred_only_FOV def evalue(preImg, gtruth_masks, test_border_masks): #predictions only inside the FOV y_scores, y_true = pred_only_FOV(preImg,gtruth_masks, test_border_masks) #returns data only inside the FOV #Area under the ROC curve fpr, tpr, thresholds = roc_curve((y_true), y_scores) AUC_ROC = roc_auc_score(y_true, y_scores) # test_integral = np.trapz(tpr,fpr) #trapz is numpy integration #Precision-recall curve precision, recall, thresholds = precision_recall_curve(y_true, y_scores) precision = np.fliplr([precision])[0] #so the array is increasing (you won't get negative AUC) recall = np.fliplr([recall])[0] #so the array is increasing (you won't get negative AUC) #Confusion matrix threshold_confusion = 0.5 y_pred = np.empty((y_scores.shape[0])) for i in range(y_scores.shape[0]): if y_scores[i]>=threshold_confusion: y_pred[i]=1 else: y_pred[i]=0 confusion = confusion_matrix(y_true, y_pred) accuracy = 0 if float(np.sum(confusion))!=0: accuracy = float(confusion[0,0]+confusion[1,1])/float(np.sum(confusion)) specificity = 0 if float(confusion[0,0]+confusion[0,1])!=0: specificity = float(confusion[0,0])/float(confusion[0,0]+confusion[0,1]) sensitivity = 0 if float(confusion[1,1]+confusion[1,0])!=0: sensitivity = float(confusion[1,1])/float(confusion[1,1]+confusion[1,0]) precision = 0 if float(confusion[1,1]+confusion[0,1])!=0: precision = float(confusion[1,1])/float(confusion[1,1]+confusion[0,1]) #Jaccard similarity index #jaccard_index = jaccard_similarity_score(y_true, y_pred, normalize=True) #F1 score F1_score = f1_score(y_true, y_pred, labels=None, average='binary', sample_weight=None) iou_score = jaccard_score(y_true, y_pred) dice_score = 2*iou_score/(1+iou_score) return AUC_ROC,accuracy,specificity,sensitivity,F1_score,dice_score,iou_score