import cv2 import numpy as np import matplotlib.pyplot as plt import os # import natsort import pandas as pd from skimage import morphology from sklearn import metrics from Tools.BinaryPostProcessing import binaryPostProcessing3 from PIL import Image from scipy.signal import convolve2d import time ######################################### def softmax(x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() def Skeleton(a_or_v, a_and_v): th = np.uint8(a_and_v) # Distance transform for maximum diameter vessels = th.copy() dist = cv2.distanceTransform(a_or_v, cv2.DIST_L2, 3) thinned = np.uint8(morphology.skeletonize((vessels / 255))) * 255 return thinned, dist def cal_crosspoint(vessel): # Removing bifurcation points by using specially designed kernels # Can be optimized further! (not the best implementation) thinned1, dist = Skeleton(vessel, vessel) thh = thinned1.copy() thh = thh / 255 kernel1 = np.array([[1, 1, 1], [1, 10, 1], [1, 1, 1]]) th = convolve2d(thh, kernel1, mode="same") for u in range(th.shape[0]): for j in range(th.shape[1]): if th[u, j] >= 13.0: cv2.circle(vessel, (j, u), 3 * int(dist[u, j]), (0, 0, 0), -1) # thi = cv2.cvtColor(thi, cv2.COLOR_BGR2GRAY) return vessel def AVclassifiation_pos_ve(out_path, PredAll1, PredAll2, VesselPredAll, DataSet=0, image_basename=''): """ predAll1: predition results of artery predAll2: predition results of vein VesselPredAll: predition results of vessel DataSet: the length of dataset image_basename: the name of saved mask """ ImgN = DataSet for ImgNumber in range(ImgN): height, width = PredAll1.shape[2:4] VesselProb = VesselPredAll[ImgNumber, 0, :, :] ArteryProb = PredAll1[ImgNumber, 0, :, :] VeinProb = PredAll2[ImgNumber, 0, :, :] VesselSeg = (VesselProb >= 0.1) & ((ArteryProb >= 0.2) | (VeinProb >= 0.2)) # VesselSeg = (VesselProb >= 0.5) & ((ArteryProb >= 0.5) | (VeinProb >= 0.5)) crossSeg = (VesselProb >= 0.1) & ((ArteryProb >= 0.6) & (VeinProb >= 0.6)) VesselSeg = binaryPostProcessing3(VesselSeg, removeArea=100, fillArea=20) vesselPixels = np.where(VesselSeg > 0) ArteryProb2 = np.zeros((height, width)) VeinProb2 = np.zeros((height, width)) crossProb2 = np.zeros((height, width)) image_color = np.zeros((3, height, width), dtype=np.uint8) for i in range(len(vesselPixels[0])): row = vesselPixels[0][i] col = vesselPixels[1][i] probA = ArteryProb[row, col] probV = VeinProb[row, col] ArteryProb2[row, col] = probA VeinProb2[row, col] = probV test_use_vessel = np.zeros((height, width), np.uint8) ArteryPred2 = ((ArteryProb2 >= 0.2) & (ArteryProb2 > VeinProb2)) VeinPred2 = ((VeinProb2 >= 0.2) & (VeinProb2 > ArteryProb2)) ArteryPred2 = binaryPostProcessing3(ArteryPred2, removeArea=100, fillArea=20) VeinPred2 = binaryPostProcessing3(VeinPred2, removeArea=100, fillArea=20) image_color[0, :, :] = ArteryPred2 * 255 image_color[2, :, :] = VeinPred2 * 255 image_color = image_color.transpose((1, 2, 0)) imgBin_vessel = ArteryPred2 + VeinPred2 imgBin_vessel[imgBin_vessel[:, :] == 2] = 1 test_use_vessel = imgBin_vessel.copy() * 255 vessel = cal_crosspoint(test_use_vessel) contours_vessel, hierarchy_c = cv2.findContours(vessel, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) # inter continuity for vessel_seg in range(len(contours_vessel)): C_vessel = np.zeros(vessel.shape, np.uint8) C_vessel = cv2.drawContours(C_vessel, contours_vessel, vessel_seg, (255, 255, 255), cv2.FILLED) cli = np.mean(VeinProb2[C_vessel == 255]) / np.mean(ArteryProb2[C_vessel == 255]) if cli < 1: image_color[ (C_vessel[:, :] == 255) & (test_use_vessel[:, :] == 255)] = [255, 0, 0] else: image_color[ (C_vessel[:, :] == 255) & (test_use_vessel[:, :] == 255)] = [0, 0, 255] Image.fromarray(image_color).save(os.path.join(out_path, f'{image_basename[ImgNumber].split(".")[0]}.png')) def AVclassifiation(out_path, PredAll1, PredAll2, VesselPredAll, DataSet=0, image_basename=''): """ predAll1: predition results of artery predAll2: predition results of vein VesselPredAll: predition results of vessel DataSet: the length of dataset image_basename: the name of saved mask """ ImgN = DataSet for ImgNumber in range(ImgN): height, width = PredAll1.shape[2:4] VesselProb = VesselPredAll[ImgNumber, 0, :, :] ArteryProb = PredAll1[ImgNumber, 0, :, :] VeinProb = PredAll2[ImgNumber, 0, :, :] VesselSeg = (VesselProb >= 0.1) & ((ArteryProb >= 0.2) | (VeinProb >= 0.2)) # VesselSeg = (VesselProb >= 0.5) & ((ArteryProb >= 0.5) | (VeinProb >= 0.5)) crossSeg = (VesselProb >= 0.1) & ((ArteryProb >= 0.6) & (VeinProb >= 0.6)) VesselSeg = binaryPostProcessing3(VesselSeg, removeArea=100, fillArea=20) vesselPixels = np.where(VesselSeg > 0) ArteryProb2 = np.zeros((height, width)) VeinProb2 = np.zeros((height, width)) crossProb2 = np.zeros((height, width)) image_color = np.zeros((3, height, width), dtype=np.uint8) for i in range(len(vesselPixels[0])): row = vesselPixels[0][i] col = vesselPixels[1][i] probA = ArteryProb[row, col] probV = VeinProb[row, col] ArteryProb2[row, col] = probA VeinProb2[row, col] = probV test_use_vessel = np.zeros((height, width), np.uint8) ArteryPred2 = ((ArteryProb2 >= 0.2) & (ArteryProb2 > VeinProb2)) VeinPred2 = ((VeinProb2 >= 0.2) & (VeinProb2 > ArteryProb2)) ArteryPred2 = binaryPostProcessing3(ArteryPred2, removeArea=100, fillArea=20) VeinPred2 = binaryPostProcessing3(VeinPred2, removeArea=100, fillArea=20) image_color[0, :, :] = ArteryPred2 * 255 image_color[2, :, :] = VeinPred2 * 255 image_color = image_color.transpose((1, 2, 0)) imgBin_vessel = ArteryPred2 + VeinPred2 imgBin_vessel[imgBin_vessel[:, :] == 2] = 1 test_use_vessel = imgBin_vessel.copy() * 255 vessel = cal_crosspoint(test_use_vessel) contours_vessel, hierarchy_c = cv2.findContours(vessel, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) # inter continuity for vessel_seg in range(len(contours_vessel)): C_vessel = np.zeros(vessel.shape, np.uint8) C_vessel = cv2.drawContours(C_vessel, contours_vessel, vessel_seg, (255, 255, 255), cv2.FILLED) cli = np.mean(VeinProb2[C_vessel == 255]) / np.mean(ArteryProb2[C_vessel == 255]) if cli < 1: image_color[ (C_vessel[:, :] == 255) & (test_use_vessel[:, :] == 255)] = [255, 0, 0] else: image_color[ (C_vessel[:, :] == 255) & (test_use_vessel[:, :] == 255)] = [0, 0, 255] # out vein continuity vein = image_color[:, :, 2] contours_vein, hierarchy_b = cv2.findContours(vein, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) vein_size = [] for z in range(len(contours_vein)): vein_size.append(contours_vein[z].size) vein_size = np.sort(np.array(vein_size)) # image_color_copy = np.uint8(image_color).copy() for vein_seg in range(len(contours_vein)): judge_number = min(np.mean(vein_size),500) # cv2.putText(image_color_copy, str(vein_seg), (int(contours_vein[vein_seg][0][0][0]), int(contours_vein[vein_seg][0][0][1])), 3, 1, # color=(255, 0, 0), thickness=2) if contours_vein[vein_seg].size < judge_number: C_vein = np.zeros(vessel.shape, np.uint8) C_vein = cv2.drawContours(C_vein, contours_vein, vein_seg, (255, 255, 255), cv2.FILLED) max_diameter = np.max(Skeleton(C_vein, C_vein)[1]) image_color_copy_vein = image_color[:, :, 2].copy() image_color_copy_arter = image_color[:, :, 0].copy() # a_ori = cv2.drawContours(a_ori, contours_b, k, (0, 0, 0), cv2.FILLED) image_color_copy_vein = cv2.drawContours(image_color_copy_vein, contours_vein, vein_seg, (0, 0, 0), cv2.FILLED) # image_color[(C_cross[:, :] == 255) & (image_color[:, :, 1] == 255)] = [255, 0, 0] kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ( 4 * int(np.ceil(max_diameter)), 4 * int(np.ceil(max_diameter)))) C_vein_dilate = cv2.dilate(C_vein, kernel, iterations=1) # cv2.imwrite(path_out_3, C_vein_dilate) C_vein_dilate_judge = np.zeros(vessel.shape, np.uint8) C_vein_dilate_judge[ (C_vein_dilate[:, :] == 255) & (image_color_copy_vein == 255)] = 1 C_arter_dilate_judge = np.zeros(vessel.shape, np.uint8) C_arter_dilate_judge[ (C_vein_dilate[:, :] == 255) & (image_color_copy_arter == 255)] = 1 if (len(np.unique(C_vein_dilate_judge)) == 1) & ( len(np.unique(C_arter_dilate_judge)) != 1) & (np.mean(VeinProb2[C_vein == 255]) < 0.5): image_color[ (C_vein[:, :] == 255) & (image_color[:, :, 2] == 255)] = [255, 0, 0] # out artery continuity arter = image_color[:, :, 0] contours_arter, hierarchy_a = cv2.findContours(arter, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) arter_size = [] for z in range(len(contours_arter)): arter_size.append(contours_arter[z].size) arter_size = np.sort(np.array(arter_size)) for arter_seg in range(len(contours_arter)): judge_number = min(np.mean(arter_size),500) if contours_arter[arter_seg].size < judge_number: C_arter = np.zeros(vessel.shape, np.uint8) C_arter = cv2.drawContours(C_arter, contours_arter, arter_seg, (255, 255, 255), cv2.FILLED) max_diameter = np.max(Skeleton(C_arter, test_use_vessel)[1]) image_color_copy_vein = image_color[:, :, 2].copy() image_color_copy_arter = image_color[:, :, 0].copy() kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ( 4 * int(np.ceil(max_diameter)), 4 * int(np.ceil(max_diameter)))) image_color_copy_arter = cv2.drawContours(image_color_copy_arter, contours_arter, arter_seg, (0, 0, 0), cv2.FILLED) C_arter_dilate = cv2.dilate(C_arter, kernel, iterations=1) # image_color[(C_cross[:, :] == 255) & (image_color[:, :, 1] == 255)] = [255, 0, 0] C_arter_dilate_judge = np.zeros(arter.shape, np.uint8) C_arter_dilate_judge[ (C_arter_dilate[:, :] == 255) & (image_color_copy_arter[:, :] == 255)] = 1 C_vein_dilate_judge = np.zeros(arter.shape, np.uint8) C_vein_dilate_judge[ (C_arter_dilate[:, :] == 255) & (image_color_copy_vein[:, :] == 255)] = 1 if (len(np.unique(C_arter_dilate_judge)) == 1) & ( len(np.unique(C_vein_dilate_judge)) != 1) & (np.mean(VeinProb2[C_vein == 255]) < 0.5): image_color[ (C_arter[:, :] == 255) & (image_color[:, :, 0] == 255)] = [0, 0, 255] Image.fromarray(image_color).save(os.path.join(out_path, f'{image_basename[ImgNumber].split(".")[0]}.png')) def AVclassifiationMetrics_skeletonPixles(PredAll1,PredAll2,VesselPredAll,LabelAll1,LabelAll2,LabelVesselAll,DataSet=0, onlyMeasureSkeleton=False, strict_mode=True): """ predAll1: predition results of artery predAll2: predition results of vein VesselPredAll: predition results of vessel LabelAll1: label of artery LabelAll2: label of vein LabelVesselAll: label of vessel DataSet: the length of dataset onlyMeasureSkeleton: measure skeleton strict_mode: strict """ ImgN = DataSet senList = [] specList = [] accList = [] f1List = [] ioulist = [] diceList = [] senList_sk = [] specList_sk = [] accList_sk = [] f1List_sk = [] ioulist_sk = [] diceList_sk = [] bad_case_count = 0 bad_case_index = [] for ImgNumber in range(ImgN): height, width = PredAll1.shape[2:4] VesselProb = VesselPredAll[ImgNumber, 0,:,:] VesselLabel = LabelVesselAll[ImgNumber, 0, :, :] ArteryLabel = LabelAll1[ImgNumber, 0, :, :] VeinLabel = LabelAll2[ImgNumber, 0, :, :] ArteryProb = PredAll1[ImgNumber, 0,:,:] VeinProb = PredAll2[ImgNumber, 0,:,:] if strict_mode: VesselSeg = VesselLabel else: VesselSeg = (VesselProb >= 0.1) & ((ArteryProb >= 0.2) | (VeinProb >= 0.2)) VesselSeg= binaryPostProcessing3(VesselSeg, removeArea=100, fillArea=20) vesselPixels = np.where(VesselSeg>0) ArteryProb2 = np.zeros((height,width)) VeinProb2 = np.zeros((height,width)) for i in range(len(vesselPixels[0])): row = vesselPixels[0][i] col = vesselPixels[1][i] probA = ArteryProb[row, col] probV = VeinProb[row, col] ArteryProb2[row, col] = probA VeinProb2[row, col] = probV ArteryLabelImg2= ArteryLabel.copy() VeinLabelImg2= VeinLabel.copy() ArteryLabelImg2 [VesselSeg == 0] = 0 VeinLabelImg2 [VesselSeg == 0] = 0 ArteryVeinLabelImg = np.zeros((height, width,3), np.uint8) ArteryVeinLabelImg[ArteryLabelImg2>0] = (255, 0, 0) ArteryVeinLabelImg[VeinLabelImg2>0] = (0, 0, 255) ArteryVeinLabelCommon = np.bitwise_and(ArteryLabelImg2>0, VeinLabelImg2>0) if strict_mode: ArteryPred2 = ArteryProb2 > 0.5 VeinPred2 = VeinProb2 >= 0.5 else: ArteryPred2 = (ArteryProb2 > 0.2) & (ArteryProb2>VeinProb2) VeinPred2 = (VeinProb2 >= 0.2) & (ArteryProb20, ArteryLabelImg2>0) # 真实为动脉,预测为动脉 TNimg = np.bitwise_and(VeinPred2>0, VeinLabelImg2>0) # 真实为静脉,预测为静脉 FPimg = np.bitwise_and(ArteryPred2>0, VeinLabelImg2>0) # 真实为静脉,预测为动脉 FPimg = np.bitwise_and(FPimg, np.bitwise_not(ArteryVeinLabelCommon)) # 真实为静脉,预测为动脉,且不属于动静脉共存区域 FNimg = np.bitwise_and(VeinPred2>0, ArteryLabelImg2>0) # 真实为动脉,预测为静脉 FNimg = np.bitwise_and(FNimg, np.bitwise_not(ArteryVeinLabelCommon)) # 真实为动脉,预测为静脉,且不属于动静脉共存区域 if not onlyMeasureSkeleton: TPa = np.count_nonzero(TPimg) TNa = np.count_nonzero(TNimg) FPa = np.count_nonzero(FPimg) FNa = np.count_nonzero(FNimg) sensitivity = TPa/(TPa+FNa) specificity = TNa/(TNa + FPa) acc = (TPa + TNa) /(TPa + TNa + FPa + FNa) f1 = 2*TPa/(2*TPa + FPa + FNa) dice = 2*TPa/(2*TPa + FPa + FNa) iou = TPa/(TPa + FPa + FNa) #print('Pixel-wise Metrics', acc, sensitivity, specificity) senList.append(sensitivity) specList.append(specificity) accList.append(acc) f1List.append(f1) diceList.append(dice) ioulist.append(iou) # print('Avg Per:', np.mean(accList), np.mean(senList), np.mean(specList)) ################################################################################################## """Skeleton Performance Measurement""" Skeleton = np.uint8(morphology.skeletonize(VesselSeg)) #np.save('./tmpfile/tmp_skeleton'+str(ImgNumber)+'.npy',Skeleton) ArterySkeletonLabel = cv2.bitwise_and(ArteryLabelImg2, ArteryLabelImg2, mask=Skeleton) VeinSkeletonLabel = cv2.bitwise_and(VeinLabelImg2, VeinLabelImg2, mask=Skeleton) ArterySkeletonPred = cv2.bitwise_and(ArteryPred2, ArteryPred2, mask=Skeleton) VeinSkeletonPred = cv2.bitwise_and(VeinPred2, VeinPred2, mask=Skeleton) skeletonPixles = np.where(Skeleton >0) TPa_sk = 0 TNa_sk = 0 FPa_sk = 0 FNa_sk = 0 for i in range(len(skeletonPixles[0])): row = skeletonPixles[0][i] col = skeletonPixles[1][i] if ArterySkeletonLabel[row, col] == 1 and ArterySkeletonPred[row, col] == 1: TPa_sk = TPa_sk +1 elif VeinSkeletonLabel[row, col] == 1 and VeinSkeletonPred[row, col] == 1: TNa_sk = TNa_sk + 1 elif ArterySkeletonLabel[row, col] == 1 and VeinSkeletonPred[row, col] == 1\ and ArteryVeinLabelCommon[row, col] == 0: FNa_sk = FNa_sk + 1 elif VeinSkeletonLabel[row, col] == 1 and ArterySkeletonPred[row, col] == 1\ and ArteryVeinLabelCommon[row, col] == 0: FPa_sk = FPa_sk + 1 else: pass if (TPa_sk+FNa_sk)==0 and (TNa_sk + FPa_sk)==0 and (TPa_sk + TNa_sk + FPa_sk + FNa_sk)==0: bad_case_count += 1 bad_case_index.append(ImgNumber) sensitivity_sk = TPa_sk/(TPa_sk+FNa_sk) specificity_sk = TNa_sk/(TNa_sk + FPa_sk) acc_sk = (TPa_sk + TNa_sk) /(TPa_sk + TNa_sk + FPa_sk + FNa_sk) f1_sk = 2*TPa_sk/(2*TPa_sk + FPa_sk + FNa_sk) dice_sk = 2*TPa_sk/(2*TPa_sk + FPa_sk + FNa_sk) iou_sk = TPa_sk/(TPa_sk + FPa_sk + FNa_sk) senList_sk.append(sensitivity_sk) specList_sk.append(specificity_sk) accList_sk.append(acc_sk) f1List_sk.append(f1_sk) diceList_sk.append(dice_sk) ioulist_sk.append(iou_sk) #print('Skeletonal Metrics', acc_sk, sensitivity_sk, specificity_sk) if onlyMeasureSkeleton: print('Avg Skeleton Performance:', np.mean(accList_sk), np.mean(senList_sk), np.mean(specList_sk)) return np.mean(accList_sk), np.mean(specList_sk),np.mean(senList_sk), np.mean(f1List_sk), np.mean(diceList_sk), np.mean(ioulist_sk), bad_case_index else: print('Avg Pixel-wise Performance:', np.mean(accList), np.mean(senList), np.mean(specList)) return np.mean(accList), np.mean(specList),np.mean(senList),np.mean(f1List),np.mean(diceList),np.mean(ioulist) if __name__ == '__main__': pro_path = r'F:\dw\RIP-AV\AV\log\DRIVE\running_result\ProMap_testset.npy' ps = np.load(pro_path) AVclassifiation(r'./', ps[:, 0:1, :, :], ps[:, 1:2, :, :], ps[:, 2:, :, :], DataSet=ps.shape[0], image_basename=[str(i)+'.png' for i in range(20)])