Spaces:
Running
Running
import numpy as np | |
import tensorlayer as tl | |
def data_augmentation1_5(*args): | |
# image3 = np.expand_dims(image3,-1) | |
args = tl.prepro.rotation_multi(args, rg=180, is_random=True, | |
fill_mode='reflect') | |
args = np.squeeze(args).astype(np.float32) | |
return args | |
def data_augmentation3_5(*args): | |
# image3 = np.expand_dims(image3,-1) | |
args = tl.prepro.shift_multi(args, wrg=0.10, hrg=0.10, is_random=True, | |
fill_mode='reflect') | |
args = np.squeeze(args).astype(np.float32) | |
return args | |
def data_augmentation4_5(*args): | |
args = tl.prepro.swirl_multi(args,is_random=True) | |
args = np.squeeze(args).astype(np.float32) | |
return args | |
def data_augmentation2_5(*args): | |
# image3 = np.expand_dims(image3,-1) | |
args = tl.prepro.zoom_multi(args, zoom_range=[0.5, 2.5], is_random=True, | |
fill_mode='reflect') | |
args = np.squeeze(args).astype(np.float32) | |
return args | |
def data_aug5_old(data_mat, label_mat, label_data_centerness, choice): | |
data_mat = np.transpose(data_mat, (1, 2, 0)) | |
label_mat = np.transpose(label_mat, (1, 2, 0)) | |
label_data_centerness = np.transpose(label_data_centerness, (1, 2, 0)) | |
if choice == 0: | |
data_mat = data_mat | |
label_mat = label_mat | |
label_data_centerness = label_data_centerness | |
elif choice == 1: | |
data_mat = np.fliplr(data_mat) | |
label_mat = np.fliplr(label_mat) | |
label_data_centerness = np.fliplr(label_data_centerness) | |
elif choice == 2: | |
data_mat = np.flipud(data_mat) | |
label_mat = np.flipud(label_mat) | |
label_data_centerness = np.flipud(label_data_centerness) | |
elif choice == 3: | |
data_mat, label_mat, label_data_centerness= data_augmentation1_5(data_mat, label_mat, label_data_centerness) | |
elif choice == 4: | |
data_mat, label_mat, label_data_centerness= data_augmentation2_5(data_mat, label_mat, label_data_centerness) | |
elif choice == 5: | |
data_mat, label_mat, label_data_centerness= data_augmentation3_5(data_mat, label_mat, label_data_centerness) | |
elif choice == 6: | |
data_mat, label_mat, label_data_centerness= data_augmentation4_5(data_mat, label_mat, label_data_centerness) | |
data_mat = np.transpose(data_mat, (2, 0, 1)) | |
label_mat = np.transpose(label_mat, (2, 0, 1)) | |
label_data_centerness = np.transpose(label_data_centerness, (2, 0, 1)) | |
return data_mat, label_mat, label_data_centerness | |
# data augmentation for variable number of input | |
def data_aug5(*args,choice): | |
datas=[np.transpose(item, (1, 2, 0)) for item in args] | |
if choice==1: | |
datas=[np.fliplr(item) for item in datas] | |
elif choice==2: | |
datas = [np.flipud(item) for item in datas] | |
elif choice==3: | |
datas = data_augmentation1_5(*datas) | |
elif choice==4: | |
datas = data_augmentation2_5(*datas) | |
elif choice==5: | |
datas = data_augmentation3_5(*datas) | |
elif choice==6: | |
datas = data_augmentation4_5(*datas) | |
datas = [np.transpose(item, (2, 0, 1)) for item in datas] | |
return tuple(datas) | |