Spaces:
Running
Running
File size: 15,625 Bytes
04cd202 6df031f 2d8e012 04cd202 6df031f 04cd202 6df031f 04cd202 6df031f 6ae64b3 973cb62 6df031f 04cd202 6df031f 04cd202 6df031f 04cd202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import torch
import gradio as gr
from PIL import Image
import cv2
from AV.models.network import PGNet
from AV.Tools.AVclassifiation import AVclassifiation
from AV.Tools.utils_test import paint_border_overlap, extract_ordered_overlap_big, Normalize, sigmoid, recompone_overlap, \
kill_border
from AV.config import config_test_general as cfg
import torch.autograd as autograd
import numpy as np
import os
from datetime import datetime
from huggingface_hub import hf_hub_download
hf_token = os.environ.get("HF_token")
def creatMask(Image, threshold=5):
##This program try to creat the mask for the filed-of-view
##Input original image (RGB or green channel), threshold (user set parameter, default 10)
##Output: the filed-of-view mask
if len(Image.shape) == 3: ##RGB image
gray = cv2.cvtColor(Image, cv2.COLOR_BGR2GRAY)
Mask0 = gray >= threshold
else: # for green channel image
Mask0 = Image >= threshold
# ######get the largest blob, this takes 0.18s
cvVersion = int(cv2.__version__.split('.')[0])
Mask0 = np.uint8(Mask0)
contours, hierarchy = cv2.findContours(Mask0, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
areas = [cv2.contourArea(c) for c in contours]
max_index = np.argmax(areas)
Mask = np.zeros(Image.shape[:2], dtype=np.uint8)
cv2.drawContours(Mask, contours, max_index, 1, -1)
ResultImg = Image.copy()
if len(Image.shape) == 3:
ResultImg[Mask == 0] = (255, 255, 255)
else:
ResultImg[Mask == 0] = 255
Mask[Mask > 0] = 255
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
Mask = cv2.morphologyEx(Mask, cv2.MORPH_OPEN, kernel, iterations=3)
return ResultImg, Mask
def shift_rgb(img, *args):
result_img = np.empty_like(img)
shifts = args
max_value = 255
# print(shifts)
for i, shift in enumerate(shifts):
lut = np.arange(0, max_value + 1).astype("float32")
lut += shift
lut = np.clip(lut, 0, max_value).astype(img.dtype)
if len(img.shape) == 2:
print(f'=========grey image=======')
result_img = cv2.LUT(img, lut)
else:
result_img[..., i] = cv2.LUT(img[..., i], lut)
return result_img
def CAM(x, img_path, rate=0.8, ind=0):
"""
:param dataset_path: 计算整个训练数据集的平均RGB通道值
:param image: array, 单张图片的array 形式
:return: array形式的cam后的结果
"""
# 每次使用新数据集时都需要重新计算前面的RBG平均值
# RGB-->Rshift-->CLAHE
x = np.uint8(x)
_, Mask0 = creatMask(x, threshold=10)
Mask = np.zeros((x.shape[0], x.shape[1]), np.float32)
Mask[Mask0 > 0] = 1
resize = False
R_mea_num, G_mea_num, B_mea_num = [], [], []
dataset_path = img_path
image = np.array(Image.open(dataset_path))
R_mea_num.append(np.mean(image[:, :, 0]))
G_mea_num.append(np.mean(image[:, :, 1]))
B_mea_num.append(np.mean(image[:, :, 2]))
mea2stand = int((np.mean(R_mea_num) - np.mean(x[:, :, 0])) * rate)
mea2standg = int((np.mean(G_mea_num) - np.mean(x[:, :, 1])) * rate)
mea2standb = int((np.mean(B_mea_num) - np.mean(x[:, :, 2])) * rate)
y = shift_rgb(x, mea2stand, mea2standg, mea2standb)
y[Mask == 0, :] = 0
return y
def modelEvalution_out_big(net, use_cuda=False, dataset='', is_kill_border=True, input_ch=3,
config=None, output_dir='', evaluate_metrics=False):
# path for images to save
n_classes = 3
Net = PGNet(use_global_semantic=config.use_global_semantic, input_ch=input_ch,
num_classes=n_classes, use_cuda=use_cuda, pretrained=False, centerness=config.use_centerness,
centerness_map_size=config.centerness_map_size)
msg = Net.load_state_dict(net, strict=False)
if use_cuda:
Net.cuda()
Net.eval()
image_basename = dataset
# if not os.path.exists(output_dir):
# os.makedirs(output_dir)
step = 1
# every step of between star and end for loop until len(image_basename)
# for start_end in start_end_list:
image0 = cv2.imread(image_basename)
test_image_height = image0.shape[0]
test_image_width = image0.shape[1]
if config.use_resize:
if min(test_image_height, test_image_width) <= 256:
scaling = 512 / min(test_image_height, test_image_width)
new_width = int(test_image_width * scaling)
new_height = int(test_image_height * scaling)
test_image_width, test_image_height = new_width, new_height
# 大尺寸处理:确保最长边≤1536
elif max(test_image_height, test_image_width) >= 2048:
scaling = 2048 / max(test_image_height, test_image_width)
new_width = int(test_image_width * scaling)
new_height = int(test_image_height * scaling)
test_image_width, test_image_height = new_width, new_height
ArteryPredAll = np.zeros((1, 1, test_image_height, test_image_width), np.float32)
VeinPredAll = np.zeros((1, 1, test_image_height, test_image_width), np.float32)
VesselPredAll = np.zeros((1, 1, test_image_height, test_image_width), np.float32)
ProMap = np.zeros((1, 3, test_image_height, test_image_width), np.float32)
MaskAll = np.zeros((1, 1, test_image_height, test_image_width), np.float32)
ArteryPred, VeinPred, VesselPred, Mask, LabelArtery, LabelVein, LabelVessel = GetResult_out_big(Net, 0,
use_cuda=use_cuda,
dataset=image_basename,
is_kill_border=is_kill_border,
config=config,
resize_w_h=(
test_image_width,
test_image_height)
)
ArteryPredAll[0 % step, :, :, :] = ArteryPred
VeinPredAll[0 % step, :, :, :] = VeinPred
VesselPredAll[0 % step, :, :, :] = VesselPred
MaskAll[0 % step, :, :, :] = Mask
image_color = AVclassifiation(output_dir, ArteryPredAll, VeinPredAll, VesselPredAll, 1, image_basename)
return image_color
def GetResult_out_big(Net, k, use_cuda=False, dataset='', is_kill_border=False, config=None,
resize_w_h=None):
ImgName = dataset
Img0 = cv2.imread(ImgName)
_, Mask0 = creatMask(Img0, threshold=-1)
Mask = np.zeros((Img0.shape[0], Img0.shape[1]), np.float32)
Mask[Mask0 > 0] = 1
if config.use_resize:
Img0 = cv2.resize(Img0, resize_w_h)
Mask = cv2.resize(Mask, resize_w_h, interpolation=cv2.INTER_NEAREST)
Img = Img0
height, width = Img.shape[:2]
n_classes = 3
patch_height = config.patch_size
patch_width = config.patch_size
stride_height = config.stride_height
stride_width = config.stride_width
Img = cv2.cvtColor(Img, cv2.COLOR_BGR2RGB)
if cfg.dataset == 'all':
# # # 将图像转换为 LAB 颜色空间
lab = cv2.cvtColor(Img, cv2.COLOR_RGB2LAB)
# 拆分 LAB 通道
l, a, b = cv2.split(lab)
# 创建 CLAHE 对象并应用到 L 通道
clahe = cv2.createCLAHE(clipLimit=2, tileGridSize=(8, 8))
l_clahe = clahe.apply(l)
# 将 CLAHE 处理后的 L 通道与原始的 A 和 B 通道合并
lab_clahe = cv2.merge((l_clahe, a, b))
# 将图像转换回 BGR 颜色空间
Img = cv2.cvtColor(lab_clahe, cv2.COLOR_LAB2RGB)
if cfg.use_CAM:
Img = CAM(Img, dataset)
Img = np.float32(Img / 255.)
Img_enlarged = paint_border_overlap(Img, patch_height, patch_width, stride_height, stride_width)
patch_size = config.patch_size
batch_size = 2
patches_imgs, global_images = extract_ordered_overlap_big(Img_enlarged, patch_height, patch_width,
stride_height,
stride_width)
patches_imgs = np.transpose(patches_imgs, (0, 3, 1, 2))
patches_imgs = Normalize(patches_imgs)
global_images = np.transpose(global_images, (0, 3, 1, 2))
global_images = Normalize(global_images)
patchNum = patches_imgs.shape[0]
max_iter = int(np.ceil(patchNum / float(batch_size)))
pred_patches = np.zeros((patchNum, n_classes, patch_size, patch_size), np.float32)
for i in range(max_iter):
begin_index = i * batch_size
end_index = (i + 1) * batch_size
patches_temp1 = patches_imgs[begin_index:end_index, :, :, :]
patches_input_temp1 = torch.FloatTensor(patches_temp1)
global_input_temp1 = patches_input_temp1
if config.use_global_semantic:
global_temp1 = global_images[begin_index:end_index, :, :, :]
global_input_temp1 = torch.FloatTensor(global_temp1)
if use_cuda:
patches_input_temp1 = autograd.Variable(patches_input_temp1.cuda())
if config.use_global_semantic:
global_input_temp1 = autograd.Variable(global_input_temp1.cuda())
else:
patches_input_temp1 = autograd.Variable(patches_input_temp1)
if config.use_global_semantic:
global_input_temp1 = autograd.Variable(global_input_temp1)
output_temp, _1, = Net(patches_input_temp1, global_input_temp1)
pred_patches_temp = np.float32(output_temp.data.cpu().numpy())
pred_patches_temp_sigmoid = sigmoid(pred_patches_temp)
pred_patches[begin_index:end_index, :, :, :] = pred_patches_temp_sigmoid[:, :, :patch_size, :patch_size]
del patches_input_temp1
del pred_patches_temp
del patches_temp1
del output_temp
del pred_patches_temp_sigmoid
new_height, new_width = Img_enlarged.shape[0], Img_enlarged.shape[1]
pred_img = recompone_overlap(pred_patches, new_height, new_width, stride_height, stride_width) # predictions
pred_img = pred_img[:, 0:height, 0:width]
if is_kill_border:
pred_img = kill_border(pred_img, Mask)
ArteryPred = np.float32(pred_img[0, :, :])
VeinPred = np.float32(pred_img[2, :, :])
VesselPred = np.float32(pred_img[1, :, :])
ArteryPred = ArteryPred[np.newaxis, :, :]
VeinPred = VeinPred[np.newaxis, :, :]
VesselPred = VesselPred[np.newaxis, :, :]
Mask = Mask[np.newaxis, :, :]
return ArteryPred, VeinPred, VesselPred, Mask, ArteryPred, VeinPred, VesselPred,
def out_test(cfg,model_path='', output_dir='', evaluate_metrics=False, img_name='out_test'):
device = torch.device("cuda" if cfg.use_cuda else "cpu")
model_path = model_path
net = torch.load(model_path, map_location=device)
image_color = modelEvalution_out_big(net,
use_cuda=cfg.use_cuda,
dataset=img_name,
input_ch=cfg.input_nc,
config=cfg,
output_dir=output_dir, evaluate_metrics=evaluate_metrics)
return image_color
def segment_by_out_test(image,model_name):
print("✅ 传到后端的模型名:", model_name)
model_path = hf_hub_download(
repo_id="weidai00/RIP-AV-sulab", # 模型库的名字
filename=f"G_{model_name}.pkl", # 文件名
repo_type="model", # 模型库必须写 repo_type
token=hf_token
)
cfg.set_dataset(model_name)
if image is None:
raise gr.Error("请上传一张图像(upload a fundus image)。")
os.makedirs("./examples", exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
temp_path = f"./examples/tmp_upload_{timestamp}.png"
image.save(temp_path)
image_color = out_test(cfg,model_path=model_path, output_dir='', evaluate_metrics=False, img_name=temp_path)
return Image.fromarray(image_color)
def gradio_interface():
model_info_md = """
### 📘 模型说明
| 模型(model name) | 数据集(dataset) | patch size |running time |
|------|--------|------------|--------|
| DRIVE | 小分辨率血管图像 | 256 |30s以内|
| HRF | 高分辨率图像(健康、青光眼等)| 256 | 2min以内|
| LES | 视盘中心图像适配 | 256 |2min以内|
| UKBB | UKBB图像 | 256 |2min以内 |
| 通用模型(512) | 超清图像,适配性强 | 512 |2min以内|
"""
model_choices = [
("1: DRIVE专用模型", "DRIVE"),
("2: HRF专用模型", "hrf"),
("3: LES专用模型","LES"),
("4: UKBB专用模型", "ukbb"),
("5: 通用模型(general)", "all"),
]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 👁️ 眼底图像动静脉血管分割(Retinal image artery and vein segmentation)")
gr.Markdown("上传眼底图像,选择一个模型开始处理,结果将自动生成。(Upload the retinal image, select a model to start processing, and the results will be generated automatically.)")
with gr.Row():
image_input = gr.Image(type="pil", label="📤 上传图像(upload)",height=300)
with gr.Row():
with gr.Column():
model_select = gr.Radio(
choices=model_choices,
label="🎯 选择模型",
value="DRIVE",
interactive = True
)
submit_btn = gr.Button("🚀 开始分割(RUN)")
with gr.Column():
output_image = gr.Image(label="🖼️ 分割结果(Result)")
gr.Markdown("### 📁 示例图像examples(点击自动加载)")
gr.Examples(
examples=[
["examples/DRIVE.tif", "DRIVE"],
["examples/LES.png", "LES"],
["examples/hrf.png", "hrf"],
["examples/ukbb.png", "ukbb"],
["examples/all.jpg", "all"]
],
inputs=[image_input, model_select],
label="示例图像",
examples_per_page=5
)
with gr.Accordion("📖 模型说明-Description(点击展开)", open=False):
gr.Markdown(model_info_md)
# 功能连接
submit_btn.click(
fn=segment_by_out_test,
inputs=[image_input, model_select],
outputs=[output_image]
)
gr.Markdown("📚 **专用模型引用cite**: RIP-AV: Joint Representative Instance Pre-training with Context Aware Network for Retinal Artery/Vein Segmentation")
gr.Markdown("📚 **通用模型引用cite**: An Efficient and Interpretable Foundation Model for Retinal Image Analysis in Disease Diagnosis.")
demo.queue()
demo.launch()
if __name__ == '__main__':
# cfg.set_dataset('all')
# image_color = out_test(cfg = cfg, evaluate_metrics=False, img_name=r'.\AV\data\AV-DRIVE\test\images\01_test.tif')
# Image.fromarray(image_color).save('image_color.png')
#print(cfg.patch_size)
gradio_interface()
|