File size: 6,758 Bytes
6c0075d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# -*- coding: utf-8 -*-
import torchvision.models
from torch import nn
import torch

import torch.nn.functional as F
from AV.models.layers import *
from torchvision.models.convnext import convnext_tiny, ConvNeXt_Tiny_Weights
import numpy as np
import math
from torchvision import models
import copy

class PGNet(nn.Module):
    def __init__(self, input_ch=3, resnet='convnext_tiny', num_classes=3, use_cuda=False, pretrained=True,centerness=False, centerness_map_size=[128,128],use_global_semantic=False):
        super(PGNet, self).__init__()
        self.resnet = resnet
        base_model = convnext_tiny
        # layers = list(base_model(pretrained=pretrained,num_classes=num_classes,input_ch=input_ch).children())[:cut]
        self.use_high_semantic = False

        cut = 6
        if pretrained:
            layers = list(base_model(weights=ConvNeXt_Tiny_Weights.IMAGENET1K_V1).features)[:cut]
        else:
            layers = list(base_model().features)[:cut]

        base_layers = nn.Sequential(*layers)
        self.use_global_semantic = use_global_semantic
        ### global momentum
        if self.use_global_semantic:

            self.pg_fusion = PGFusion()
            self.base_layers_global_momentum = copy.deepcopy(base_layers)
            set_requires_grad(self.base_layers_global_momentum,requires_grad=False)

        # self.stage = [SaveFeatures(base_layers[0][1])]  # stage 1  c=96

        self.stage = []
        self.stage.append(SaveFeatures(base_layers[0][1]))  # stem c=96
        self.stage.append(SaveFeatures(base_layers[1][2]))  # stage 1 c=96
        self.stage.append(SaveFeatures(base_layers[3][2]))  # stage 2 c=192
        self.stage.append(SaveFeatures(base_layers[5][8]))  # stage 3 c=384
        # self.stage.append(SaveFeatures(base_layers[7][2]))  # stage 5 c=768

        self.up2 = DBlock(384, 192)
        self.up3 = DBlock(192, 96)
        self.up4 = DBlock(96, 96)

        # final convolutional layers
        # predict artery, vein and vessel

        self.seg_head = SegmentationHead(96, num_classes, 3, upsample=4)

        self.sn_unet = base_layers
        self.num_classes = num_classes

        self.bn_out = nn.BatchNorm2d(3)
        #self.av_cross = AV_Cross(block=4,kernel_size=1)
        # use centerness block
        self.centerness = centerness

        if self.centerness and centerness_map_size[0] == 128:

            # block 1
            self.cenBlock1 = [
                nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
            ]
            self.cenBlock1 = nn.Sequential(*self.cenBlock1)

            # centerness block
            self.cenBlockMid = [
                nn.Conv2d(96, 48, kernel_size=3, padding=1, bias=False),
                nn.BatchNorm2d(48),
                # nn.Conv2d(48, 48, kernel_size=3, padding=3, bias=False),
                # nn.BatchNorm2d(48),
                nn.Conv2d(48, 96, kernel_size=1, padding=0, bias=False),
            ]
            self.cenBlockMid = nn.Sequential(*self.cenBlockMid)
            self.cenBlockFinal = [
                nn.BatchNorm2d(96),
                nn.ReLU(inplace=True),
                nn.Conv2d(96, 3, kernel_size=1, padding=0, bias=True),
                nn.Sigmoid()

            ]
            self.cenBlockFinal = nn.Sequential(*self.cenBlockFinal)
    def forward(self, x,y=None):

        x = self.sn_unet(x)
        global_rep = None
        if self.use_global_semantic:
            global_rep = self.base_layers_global_momentum(y)
            x = self.pg_fusion(x,global_rep)
        if len(x.shape) == 4 and x.shape[2] != x.shape[3]:
            B, H, W, C = x.shape
            x = x.permute(0, 3, 1, 2).contiguous()
        elif len(x.shape) == 3:
            B, L, C = x.shape
            h = int(L ** 0.5)
            x = x.view(B, h, h, C)
            x = x.permute(0, 3, 1, 2).contiguous()
        else:
            x = x

        if self.use_high_semantic:
            high_out = x.clone()
        else:
            high_out = x.clone()
        if self.resnet == 'swin_t' or self.resnet == 'convnext_tiny':
            # feature = self.stage[1:]
            feature = self.stage[::-1]
            # head = feature[0]
            skip = feature[1:]

            # x = self.up1(x,skip[0].features)
            x = self.up2(x, skip[0].features)
            x = self.up3(x, skip[1].features)
            x = self.up4(x, skip[2].features)
        x_out = self.seg_head(x)
        ########################
        # baseline output
        # artery, vein and vessel
        output = x_out.clone()
        #av cross
        #output = self.av_cross(output)
        #output = F.relu(self.bn_out(output))
        # use centerness block
        centerness_maps = None
        if self.centerness:

            block1 = self.cenBlock1(self.stage[1].features)  # [96,64]
            _block1 = self.cenBlockMid(block1)  # [96,64]
            block1 = block1 + _block1
            blocks = [block1]
            blocks = torch.cat(blocks, dim=1)

            # print("blocks", blocks.shape)
            centerness_maps = self.cenBlockFinal(blocks)
            # print("maps:", centerness_maps.shape)

        return output, centerness_maps


    def forward_patch_rep(self, x):
        patch_rep = self.sn_unet(x)
        return patch_rep

    def forward_global_rep_momentum(self, x):
        global_rep = self.base_layers_global_momentum(x)
        return global_rep
    def close(self):
        for sf in self.stage: sf.remove()




def close(self):
        for sf in self.stage: sf.remove()


# set requies_grad=Fasle to avoid computation

def set_requires_grad(nets, requires_grad=False):
    if not isinstance(nets, list):
        nets = [nets]
    for net in nets:
        if net is not None:
            for param in net.parameters():
                param.requires_grad = requires_grad

pretrained_mean = torch.tensor([0.485, 0.456, 0.406], requires_grad=False).view((1, 3, 1, 1))
pretrained_std = torch.tensor([0.229, 0.224, 0.225], requires_grad=False).view((1, 3, 1, 1))

if __name__ == '__main__':
    s = PGNet(input_ch=3, resnet='convnext_tiny',centerness=True, pretrained=False,use_global_semantic=False)


    x = torch.randn(2, 3, 256, 256)
    y,Y2 = s(x)



    print(y.shape)
    print(Y2.shape)



    # pt = torch.load(r'F:\dw\MICCAI2023-STS-2D\segmentation\log\2023_07_25_18_10_10\G_0.pkl')
    # print(pt)
    # import torchvision.models as models
    # m = models.vit_b_16(pretrained=False)
    # print(m)
    # m = resnet18()
    # m_list = list(m.children())
    # def hook(module, input, output):
    #     print('fafafafgafa')
    #     print(input[0].shape)
    #     print(output[0].shape)
    # m_list[0].register_forward_hook(hook)
    #
    #
    # y = m(x)