File size: 17,536 Bytes
6c0075d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import cv2
import numpy as np

def paint_border_overlap(img, patch_h, patch_w, stride_h, stride_w):
    img_h = img.shape[0]  #height of the full image
    img_w = img.shape[1] #width of the full image
    leftover_h = (img_h-patch_h)%stride_h  #leftover on the h dim
    leftover_w = (img_w-patch_w)%stride_w  #leftover on the w dim
    if (leftover_h != 0):  #change dimension of img_h
        tmp_full_imgs = np.zeros((img_h+(stride_h-leftover_h),img_w, 3))
        tmp_full_imgs[0:img_h,0:img_w, :] = img
        img = tmp_full_imgs
    if (leftover_w != 0):   #change dimension of img_w
        tmp_full_imgs = np.zeros((img.shape[0], img_w+(stride_w - leftover_w), 3))
        tmp_full_imgs[0:img.shape[0], 0:img_w, :] = img
        img = tmp_full_imgs
    return img

def paint_border_overlap_trad(img, patch_h, patch_w, stride_h, stride_w):
    img_h = img.shape[0]  #height of the full image
    img_w = img.shape[1] #width of the full image
    leftover_h = (img_h-patch_h)%stride_h  #leftover on the h dim
    leftover_w = (img_w-patch_w)%stride_w  #leftover on the w dim
    if (leftover_h != 0):  #change dimension of img_h
        tmp_full_imgs = np.zeros((img_h+(stride_h-leftover_h),img_w, 2))
        tmp_full_imgs[0:img_h,0:img_w, :] = img
        img = tmp_full_imgs
    if (leftover_w != 0):   #change dimension of img_w
        tmp_full_imgs = np.zeros((img.shape[0], img_w+(stride_w - leftover_w), 2))
        tmp_full_imgs[0:img.shape[0], 0:img_w, :] = img
        img = tmp_full_imgs
    return img

def pred_only_FOV_AV(data_imgs1,data_imgs2,data_masks1,data_masks2,original_imgs_border_masks,threshold_confusion):
    assert (len(data_imgs1.shape)==4 and len(data_masks1.shape)==4)  #4D arrays
    assert (data_imgs1.shape[0]==data_masks1.shape[0])
    assert (data_imgs1.shape[2]==data_masks1.shape[2])
    assert (data_imgs1.shape[3]==data_masks1.shape[3])
    assert (data_imgs1.shape[1]==1 and data_masks1.shape[1]==1)  #check the channel is 1
    height = data_imgs1.shape[2]
    width = data_imgs1.shape[3]
    new_pred_imgs1 = []
    new_pred_masks1 = []
    new_pred_imgs2 = []
    new_pred_masks2 = []
    for i in range(data_imgs1.shape[0]):  #loop over the full images
        for x in range(width):
            for y in range(height):
                if inside_FOV_DRIVE_AV(i,x,y,data_imgs1,data_imgs2,original_imgs_border_masks,threshold_confusion)==True:
                    new_pred_imgs1.append(data_imgs1[i,:,y,x])
                    new_pred_masks1.append(data_masks1[i,:,y,x])
                    new_pred_imgs2.append(data_imgs2[i,:,y,x])
                    new_pred_masks2.append(data_masks2[i,:,y,x])
    new_pred_imgs1 = np.asarray(new_pred_imgs1)
    new_pred_masks1 = np.asarray(new_pred_masks1)
    new_pred_imgs2 = np.asarray(new_pred_imgs2)
    new_pred_masks2 = np.asarray(new_pred_masks2)
    return new_pred_imgs1, new_pred_masks1,new_pred_imgs2, new_pred_masks2

def pred_only_FOV_AV(data_imgs1,data_imgs2,data_masks1,data_masks2,original_imgs_border_masks,threshold_confusion):
    assert (len(data_imgs1.shape)==4 and len(data_masks1.shape)==4)  #4D arrays
    assert (data_imgs1.shape[0]==data_masks1.shape[0])
    assert (data_imgs1.shape[2]==data_masks1.shape[2])
    assert (data_imgs1.shape[3]==data_masks1.shape[3])
    assert (data_imgs1.shape[1]==1 and data_masks1.shape[1]==1)  #check the channel is 1
    height = data_imgs1.shape[2]
    width = data_imgs1.shape[3]
    new_pred_imgs1 = []
    new_pred_masks1 = []
    new_pred_imgs2 = []
    new_pred_masks2 = []
    for i in range(data_imgs1.shape[0]):  #loop over the full images


        for x in range(width):
            for y in range(height):
                if inside_FOV_DRIVE_AV(i,x,y,data_masks1,data_masks2,original_imgs_border_masks,threshold_confusion)==True:
                    new_pred_imgs1.append(data_imgs1[i,:,y,x])
                    new_pred_masks1.append(data_masks1[i,:,y,x])
                    new_pred_imgs2.append(data_imgs2[i,:,y,x])
                    new_pred_masks2.append(data_masks2[i,:,y,x])
    new_pred_imgs1 = np.asarray(new_pred_imgs1)
    new_pred_masks1 = np.asarray(new_pred_masks1)
    new_pred_imgs2 = np.asarray(new_pred_imgs2)
    new_pred_masks2 = np.asarray(new_pred_masks2)
    return new_pred_imgs1, new_pred_masks1,new_pred_imgs2, new_pred_masks2



def inside_FOV_DRIVE_AV(i, x, y,data_imgs1,data_imgs2, DRIVE_masks,threshold_confusion):
    assert (len(DRIVE_masks.shape)==4)  #4D arrays
    assert (DRIVE_masks.shape[1]==1)  #DRIVE masks is black and white
    # DRIVE_masks = DRIVE_masks/255.  #NOOO!! otherwise with float numbers takes forever!!

    if (x >= DRIVE_masks.shape[3] or y >= DRIVE_masks.shape[2]): #my image bigger than the original
        return False

    if (DRIVE_masks[i,0,y,x]>0)&((data_imgs1[i,0,y,x]>threshold_confusion)|(data_imgs2[i,0,y,x]>threshold_confusion)):  #0==black pixels
        # print DRIVE_masks[i,0,y,x]  #verify it is working right
        return True
    else:
        return False

def extract_ordered_overlap_trad(img, patch_h, patch_w,stride_h,stride_w,ratio):
    img_h = img.shape[0]  #height of the full image
    img_w = img.shape[1] #width of the full image
    assert ((img_h-patch_h)%stride_h==0 and (img_w-patch_w)%stride_w==0)
    N_patches_img = ((img_h-patch_h)//stride_h+1)*((img_w-patch_w)//stride_w+1)  #// --> division between integers
    patches = np.empty((N_patches_img, patch_h//ratio, patch_w//ratio, 2))
    iter_tot = 0   #iter over the total number of patches (N_patches)
    for h in range((img_h-patch_h)//stride_h+1):
        for w in range((img_w-patch_w)//stride_w+1):
            patch = img[h*stride_h:(h*stride_h)+patch_h, w*stride_w:(w*stride_w)+patch_w, :]
            patch = cv2.resize(patch,(patch_h//ratio, patch_w//ratio))
            patches[iter_tot]=patch
            iter_tot +=1   #total
    assert (iter_tot==N_patches_img)
    return patches  #array with all the img divided in patches

def make_pad(Patches,pad,sign='',normalize=True):
    # h,w,3
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    if pad<=0:
        return Patches
    p = np.zeros((256,256,3),dtype=np.float32)
    if sign=='img' and normalize:
        p[:,:,0] = (p[:,:,0] - mean[0]) / std[0]
        p[:,:,1] = (p[:,:,1] - mean[1]) / std[1]
        p[:,:,2] = (p[:,:,2] - mean[2]) / std[2]
    p[:Patches.shape[0],:Patches.shape[1],:] = Patches
    return p

def extract_ordered_overlap_big(img, patch_h=256, patch_w=256, stride_h=256, stride_w=256):
    img_h = img.shape[0]  #height of the full image
    img_w = img.shape[1] #width of the full image

    big_patch_h = int(patch_h * 1.5)
    big_patch_w = int(patch_w * 1.5)
    assert ((img_h-patch_h)%stride_h==0 and (img_w-patch_w)%stride_w==0)
    N_patches_img = ((img_h-patch_h)//stride_h+1)*((img_w-patch_w)//stride_w+1)  #// --> division between integers
    patches = np.empty((N_patches_img, patch_h, patch_w, 3) )
    patches_big = np.empty((N_patches_img, patch_h, patch_w, 3))
    img_big = np.zeros((img_h+(big_patch_h-patch_h), img_w+(big_patch_w-patch_w), 3))

    img_big[(big_patch_h-patch_h)//2:(big_patch_h-patch_h)//2+img_h, (big_patch_w-patch_w)//2:(big_patch_w-patch_w)//2+img_w, :] = img

    iter_tot = 0   #iter over the total number of patches (N_patches)
    for h in range((img_h-patch_h)//stride_h+1):
        for w in range((img_w-patch_w)//stride_w+1):
            patch = img[h*stride_h:(h*stride_h)+patch_h, w*stride_w:(w*stride_w)+patch_w, :]
            #patch = cv2.resize(patch,(256, 256))
            patches[iter_tot] = patch
            if np.unique(patch).shape[0] == 1:
                patches_big[iter_tot] = patch
            else:
                patch_big = img_big[h*stride_h:h*stride_h+big_patch_h, w*stride_w:w*stride_w+big_patch_w, :]
                # print(patch_big.shape)
                patch_big = cv2.resize(patch_big,(patch_h, patch_w))
                patches_big[iter_tot] = patch_big

            iter_tot += 1  # total
    assert (iter_tot == N_patches_img)
    return patches, patches_big  # array with all the img divided in patches

def extract_ordered_overlap_big_v2(img, patch_h=256, patch_w=256, stride_h=256, stride_w=256):
    img_h = img.shape[0]  #height of the full image
    img_w = img.shape[1] #width of the full image
    assert ((img_h-patch_h)%stride_h==0 and (img_w-patch_w)%stride_w==0)
    N_patches_img = ((img_h-patch_h)//stride_h+1)*((img_w-patch_w)//stride_w+1)  #// --> division between integers
    patches = np.empty((N_patches_img, 256, 256, 3))
    patches_big = np.empty((N_patches_img, 256, 256, 3))

    iter_tot = 0   #iter over the total number of patches (N_patches)
    for h in range((img_h-patch_h)//stride_h+1):
        for w in range((img_w-patch_w)//stride_w+1):
            patch = img[h*stride_h:(h*stride_h)+patch_h, w*stride_w:(w*stride_w)+patch_w, :]
            pad = max(0,256-patch_h)
            patch = make_pad(patch,pad,normalize=False)
            #patch = cv2.resize(patch,(256, 256))
            patches[iter_tot]=patch

            # patch_big = img[max(0,h*stride_h-patch_h//4):min((h*stride_h)+patch_h+patch_h//4,img_h),max(0,w*stride_w-patch_w//4):min((w*stride_w)+patch_w+patch_w//4,img_w), :]
            if h==0 and w==0:
                patch_big = img[0:patch_h+patch_h//2, 0:patch_w+patch_w//2, :]

            elif h==0 and w!=0 and w!=((img_w-patch_w)//stride_w):
                patch_big = img[0:0+patch_h+patch_h//2, w*stride_w-patch_w//4:(w*stride_w)+patch_w+patch_w//4, :]
            elif h==0 and w==((img_w-patch_w)//stride_w):
                patch_big = img[0:0+patch_h+patch_h//2, (w)*stride_w-patch_w//2:(w*stride_w)+patch_w, :]
            elif h!=0 and h!=((img_h-patch_h)//stride_h) and w==0:
                patch_big = img[h*stride_h-patch_h//4:(h*stride_h)+patch_h+patch_h//4, 0:0+patch_w+patch_w//2, :]

            elif h==((img_h-patch_h)//stride_h) and w==0:
                patch_big = img[(h)*stride_h-patch_h//2:(h*stride_h)+patch_h, 0:patch_w+patch_w//2, :]
            elif h==((img_h-patch_h)//stride_h) and w!=0 and w!=((img_w-patch_w)//stride_w):
                patch_big = img[h*stride_h-patch_h//2:(h*stride_h)+patch_h, w*stride_w-patch_w//4:(w*stride_w)+patch_w+patch_w//4, :]
            elif h==((img_h-patch_h)//stride_h) and w==((img_w-patch_w)//stride_w):
                patch_big = img[h*stride_h-patch_h//2:(h*stride_h)+patch_h, (w)*stride_w-patch_w//2:(w*stride_w)+patch_w, :]
            elif h!=0 and h!=((img_h-patch_h)//stride_h) and w==((img_w-patch_w)//stride_w):
                patch_big = img[h*stride_h-patch_h//4:(h*stride_h)+patch_h+patch_h//4, (w)*stride_w-patch_w//2:(w*stride_w)+patch_w, :]
            else:
                patch_big = img[h*stride_h-patch_h//4:(h*stride_h)+patch_h+patch_h//4,w*stride_w-patch_w//4:(w*stride_w)+patch_w+patch_w//4, :]
            # print(patch_big.shape)
            patch_big = cv2.resize(patch_big,(256, 256))

            patches_big[iter_tot]=patch_big

            iter_tot +=1   #total
    assert (iter_tot==N_patches_img)
    return patches,patches_big  #array with all the img divided in patches


def extract_ordered_overlap_big_v1(img, patch_h, patch_w,stride_h,stride_w):
    img_h = img.shape[0]  #height of the full image
    img_w = img.shape[1] #width of the full image
    assert ((img_h-patch_h)%stride_h==0 and (img_w-patch_w)%stride_w==0)
    N_patches_img = ((img_h-patch_h)//stride_h+1)*((img_w-patch_w)//stride_w+1)  #// --> division between integers
    patches = np.empty((N_patches_img, patch_h, patch_w, 3))
    patches_big = np.empty((N_patches_img, patch_h, patch_w, 3))

    iter_tot = 0   #iter over the total number of patches (N_patches)
    for h in range((img_h-patch_h)//stride_h+1):
        for w in range((img_w-patch_w)//stride_w+1):
            patch = img[h*stride_h:(h*stride_h)+patch_h, w*stride_w:(w*stride_w)+patch_w, :]
            #patch = cv2.resize(patch,(256, 256))
            patches[iter_tot]=patch
            if h==0 and w==0:
                patch_big = img[h*stride_h:(h*stride_h)+patch_h+stride_h, w*stride_w:(w*stride_w)+patch_w+stride_w, :]
            elif h==0 and w!=0 and w!=((img_w-patch_w)//stride_w):
                patch_big = img[h*stride_h:(h*stride_h)+patch_h+stride_h, int((w-0.5)*stride_w):(w*stride_w)+patch_w+stride_w//2, :]
            elif h==0 and w==((img_w-patch_w)//stride_w):
                patch_big = img[h*stride_h:(h*stride_h)+patch_h+stride_h, (w-1)*stride_w:(w*stride_w)+patch_w, :]
            elif h!=0 and h!=((img_h-patch_h)//stride_h) and w==0:
                patch_big = img[int((h-0.5)*stride_h):(h*stride_h)+patch_h+stride_h//2, w*stride_w:(w*stride_w)+patch_w+stride_w, :]

            elif h==((img_h-patch_h)//stride_h) and w==0:
                patch_big = img[(h-1)*stride_h:(h*stride_h)+patch_h, w*stride_w:(w*stride_w)+patch_w+stride_w, :]
            elif h==((img_h-patch_h)//stride_h) and w!=0 and w!=((img_w-patch_w)//stride_w):
                patch_big = img[(h-1)*stride_h:(h*stride_h)+patch_h, int((w-0.5)*stride_w):(w*stride_w)+patch_w+stride_w//2, :]
            elif h==((img_h-patch_h)//stride_h) and w==((img_w-patch_w)//stride_w):
                patch_big = img[(h-1)*stride_h:(h*stride_h)+patch_h, (w-1)*stride_w:(w*stride_w)+patch_w, :]
            elif h!=0 and h!=((img_h-patch_h)//stride_h) and w==((img_w-patch_w)//stride_w):
                patch_big = img[int((h-0.5)*stride_h):(h*stride_h)+patch_h+stride_h//2, (w-1)*stride_w:(w*stride_w)+patch_w, :]
            else:
                patch_big = img[int((h-0.5)*stride_h):(h*stride_h)+patch_h+stride_h//2, int((w-0.5)*stride_w):(w*stride_w)+patch_w+stride_w//2, :]

            patch_big = cv2.resize(patch_big,(256, 256))

            patches_big[iter_tot]=patch_big

            iter_tot +=1   #total
    assert (iter_tot==N_patches_img)
    return patches,patches_big  #array with all the img divided in patches





def pred_to_imgs(pred,mode="original"):
     assert (len(pred.shape)==3)  #3D array: (Npatches,height*width,2)
     assert (pred.shape[2]==2 )  #check the classes are 2
     pred_images = np.empty((pred.shape[0],pred.shape[1]))  #(Npatches,height*width)
     if mode=="original":
         for i in range(pred.shape[0]):
             for pix in range(pred.shape[1]):
                 pred_images[i,pix]=pred[i,pix,1]
     elif mode=="threshold":
         for i in range(pred.shape[0]):
             for pix in range(pred.shape[1]):
                 if pred[i,pix,1]>=0.5:
                     pred_images[i,pix]=1
                 else:
                     pred_images[i,pix]=0
     else:
         print("mode " +str(mode) +" not recognized, it can be 'original' or 'threshold'")
         exit()
     pred_images = np.reshape(pred_images,(pred_images.shape[0],1,48,48))
     return pred_images

def recompone_overlap(pred_patches, img_h, img_w, stride_h, stride_w):
    assert (len(pred_patches.shape)==4)  #4D arrays
    #assert (pred_patches.shape[1]==2 or pred_patches.shape[1]==3)  #check the channel is 1 or 3
    patch_h = pred_patches.shape[2]
    patch_w = pred_patches.shape[3]
    N_patches_h = (img_h-patch_h)//stride_h+1
    N_patches_w = (img_w-patch_w)//stride_w+1
    N_patches_img = N_patches_h * N_patches_w
    #assert (pred_patches.shape[0]%N_patches_img==0)
    #N_full_imgs = pred_patches.shape[0]//N_patches_img
    full_prob = np.zeros((pred_patches.shape[1], img_h,img_w,))  #itialize to zero mega array with sum of Probabilities
    full_sum = np.zeros((pred_patches.shape[1], img_h,img_w))

    k = 0 #iterator over all the patches
    for h in range(N_patches_h):
        for w in range(N_patches_w):
            full_prob[:, h*stride_h:(h*stride_h)+patch_h, w*stride_w:(w*stride_w)+patch_w]+=pred_patches[k]
            full_sum[:, h*stride_h:(h*stride_h)+patch_h, w*stride_w:(w*stride_w)+patch_w]+=1
            k+=1
    assert(k==pred_patches.shape[0])
    assert(np.min(full_sum)>=1.0)  #at least one
    final_avg = full_prob/full_sum
    #print(final_avg.shape)
    # assert(np.max(final_avg)<=1.0) #max value for a pixel is 1.0
    # assert(np.min(final_avg)>=0.0) #min value for a pixel is 0.0
    return final_avg


def Normalize(Patches):
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]

    # mean = [0.3261, 0.2287, 0.1592]
    # std = [0.2589, 0.1882, 0.1369]


    Patches[:,0,:,:] = (Patches[:,0,:,:] - mean[0]) / std[0]
    Patches[:,1,:,:] = (Patches[:,1,:,:] - mean[1]) / std[1]
    Patches[:,2,:,:] = (Patches[:,2,:,:] - mean[2]) / std[2]
    return Patches

def Normalize_patch(Patches):
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]

    Patches[0,:,:] = (Patches[0,:,:] - mean[0]) / std[0]
    Patches[1,:,:] = (Patches[1,:,:] - mean[1]) / std[1]
    Patches[2,:,:] = (Patches[2,:,:] - mean[2]) / std[2]
    return Patches

def sigmoid(x):
  return np.exp((x)) / (1 + np.exp(x))

def inside_FOV_DRIVE(x, y, DRIVE_masks):
    # DRIVE_masks = DRIVE_masks/255.  #NOOO!! otherwise with float numbers takes forever!!
    if (x >= DRIVE_masks.shape[1] or y >= DRIVE_masks.shape[0]): #my image bigger than the original
        return False

    if (DRIVE_masks[y,x]>0):  #0==black pixels
        return True
    else:
        return False


def kill_border(pred_img, border_masks):
    height = pred_img.shape[1]
    width = pred_img.shape[2]
    for x in range(width):
        for y in range(height):
            if inside_FOV_DRIVE(x,y, border_masks)==False:
                pred_img[:,y,x]=0.0
    return pred_img