File size: 6,641 Bytes
6c0075d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os.path

import cv2
import numpy as np
from skimage import measure

def imageResize(Image, downsizeRatio):

    ##This program resize the original image
    ##Input: original image and downsizeRatio (user defined parameter: 0.75, 0.5 or 0.2)
    ##Output: the resized image according to the given ratio

    if  downsizeRatio < 1:#len(ImgFileList)
        ImgResized = cv2.resize(Image, dsize=None, fx=downsizeRatio, fy=downsizeRatio)
    else:
        ImgResized = Image

    ImgResized = np.uint8(ImgResized)
    return ImgResized


def creatMask(Image, threshold = 10):
    ##This program try to creat the mask for the filed-of-view
    ##Input original image (RGB or green channel), threshold (user set parameter, default 10)
    ##Output: the filed-of-view mask

    if len(Image.shape) == 3: ##RGB image
        gray = cv2.cvtColor(Image, cv2.COLOR_BGR2GRAY)
        Mask0 = gray >= threshold

    else:  #for green channel image
        Mask0 = Image >= threshold


    # ######get the largest blob, this takes 0.18s
    cvVersion = int(cv2.__version__.split('.')[0])

    Mask0 = np.uint8(Mask0)

    contours, hierarchy = cv2.findContours(Mask0, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    areas = [cv2.contourArea(c) for c in contours]
    max_index = np.argmax(areas)
    Mask = np.zeros(Image.shape[:2], dtype=np.uint8)
    cv2.drawContours(Mask, contours, max_index, 1, -1)

    ResultImg = Image.copy()
    if len(Image.shape) == 3:
        ResultImg[Mask ==0] = (255,255,255)
    else:
        ResultImg[Mask==0] = 255

    return ResultImg, Mask

def shift_rgb(img, *args):




    result_img = np.empty_like(img)
    shifts = args
    max_value = 255
    # print(shifts)
    for i, shift in enumerate(shifts):
        lut = np.arange(0, max_value + 1).astype("float32")
        lut += shift

        lut = np.clip(lut, 0, max_value).astype(img.dtype)
        if len(img.shape)==2:
            print(f'=========grey image=======')
            result_img = cv2.LUT(img,lut)
        else:
            result_img[..., i] = cv2.LUT(img[...,i],lut)

    return result_img
def cropImage_bak(Image, Mask):
    Image = Image.copy()
    Mask = Mask.copy()

    leftLimit, rightLimit, upperLimit, lowerLimit = getLimit(Mask)



    if len(Image.shape) == 3:
        ImgCropped = Image[upperLimit:lowerLimit, leftLimit:rightLimit, :]
        MaskCropped = Mask[upperLimit:lowerLimit, leftLimit:rightLimit]

        ImgCropped[:20, :, :] = 0
        ImgCropped[-20:, :, :] = 0
        ImgCropped[:, :20, :] = 0
        ImgCropped[:, -20:, :] = 0
        MaskCropped[:20, :] = 0
        MaskCropped[-20:, :] = 0
        MaskCropped[:, :20] = 0
        MaskCropped[:, -20:] = 0
    else: #len(Image.shape) == 2:
        ImgCropped = Image[upperLimit:lowerLimit, leftLimit:rightLimit]
        MaskCropped = Mask[upperLimit:lowerLimit, leftLimit:rightLimit]
        ImgCropped[:20, :] = 0
        ImgCropped[-20:, :] = 0
        ImgCropped[:, :20] = 0
        ImgCropped[:, -20:] = 0
        MaskCropped[:20, :] = 0
        MaskCropped[-20:, :] = 0
        MaskCropped[:, :20] = 0
        MaskCropped[:, -20:] = 0


    cropLimit = [upperLimit, lowerLimit, leftLimit, rightLimit]

    return ImgCropped, MaskCropped, cropLimit



########################################################
###new function to get the limit for cropping.
###try to get higher speed than np.where, but not working.

def getLimit(Mask):

    Mask1 = Mask > 0
    colSums = np.sum(Mask1, axis=1)
    rowSums = np.sum(Mask1, axis=0)
    maxColSum = np.max(colSums)
    maxRowSum = np.max(rowSums)

    colList = np.where(colSums >= 0.01*maxColSum)[0]
    rowList = np.where(rowSums >= 0.01*maxRowSum)[0]

    leftLimit0 = np.min(rowList)
    rightLimit0 = np.max(rowList)
    upperLimit0 = np.min(colList)
    lowerLimit0 = np.max(colList)

    margin = 50
    leftLimit = np.clip(leftLimit0-margin, 0, Mask.shape[1])
    rightLimit = np.clip(rightLimit0+margin, 0, Mask.shape[1])
    upperLimit = np.clip(upperLimit0 - margin, 0, Mask.shape[0])
    lowerLimit = np.clip(lowerLimit0 + margin, 0, Mask.shape[0])


    return leftLimit, rightLimit, upperLimit, lowerLimit





def cropImage(Image, Mask):
    ##This program will crop the filed of view based on the mask
    ##Input: orginal image, origimal Mask  (the image needs to be RGB resized image)
    ##Output: Cropped image, Cropped Mask, the cropping limit

    height, width = Image.shape[:2]

    rowsMask0, colsMask0 = np.where(Mask > 0)
    minColIndex0, maxColIndex0 = np.argmin(colsMask0), np.argmax(colsMask0)
    minCol, maxCol = colsMask0[minColIndex0], colsMask0[maxColIndex0]

    minRowIndex0, maxRowIndex0 = np.argmin(rowsMask0), np.argmax(rowsMask0)
    minRow, maxRow = rowsMask0[minRowIndex0], rowsMask0[maxRowIndex0]

    upperLimit = np.maximum(0, minRow - 50)   #20
    lowerLimit = np.minimum(maxRow + 50, height)   #20
    leftLimit = np.maximum(0, minCol - 50)   #lowerLimit = np.minimum(maxCol + 50, width)   #20
    rightLimit = np.minimum(maxCol + 50, width)

    if len(Image.shape) == 3:
        ImgCropped = Image[upperLimit:lowerLimit, leftLimit:rightLimit, :]
        MaskCropped = Mask[upperLimit:lowerLimit, leftLimit:rightLimit]

        ImgCropped[:20, :, :] = 0
        ImgCropped[-20:, :, :] = 0
        ImgCropped[:, :20, :] = 0
        ImgCropped[:, -20:, :] = 0
        MaskCropped[:20, :] = 0
        MaskCropped[-20:, :] = 0
        MaskCropped[:, :20] = 0
        MaskCropped[:, -20:] = 0
    elif len(Image.shape) == 2:
        ImgCropped = Image[upperLimit:lowerLimit, leftLimit:rightLimit]
        MaskCropped = Mask[upperLimit:lowerLimit, leftLimit:rightLimit]
        ImgCropped[:20, :] = 0
        ImgCropped[-20:, :] = 0
        ImgCropped[:, :20] = 0
        ImgCropped[:, -20:] = 0
        MaskCropped[:20, :] = 0
        MaskCropped[-20:, :] = 0
        MaskCropped[:, :20] = 0
        MaskCropped[:, -20:] = 0
    else:
        pass


    cropLimit = [upperLimit, lowerLimit, leftLimit, rightLimit]

    return ImgCropped, MaskCropped, cropLimit


if __name__ == '__main__':
    if not os.path.exists(os.path.join('../data','AV_DRIVE','test','mask')):
        os.makedirs(os.path.join('../data','AV_DRIVE','test','mask'))

    for file in os.listdir(os.path.join('../data','AV_DRIVE','test','images')):
        # suffix file name
        if file.endswith('.jpg') or file.endswith('.png'):
            # read image
            img = cv2.imread(os.path.join('../data','AV_DRIVE','test','images',file))


            _,mask = creatMask(img)


            # save mask
            cv2.imwrite(os.path.join('../data','AV_DRIVE','test','mask',file),mask)