File size: 9,982 Bytes
6c0075d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import cv2
import numpy as np
import os
# import natsort
import pandas as pd
from skimage.morphology import skeletonize, erosion, square,dilation
from AV.Tools.BinaryPostProcessing import binaryPostProcessing3
from PIL import Image
from scipy.signal import convolve2d
from collections import OrderedDict
import time
#########################################




def Skeleton(a_or_v, a_and_v):
    th = np.uint8(a_and_v)
    # Distance transform for maximum diameter
    vessels = th.copy()
    dist = cv2.distanceTransform(a_or_v, cv2.DIST_L2, 3)  
    thinned = np.uint8(skeletonize((vessels / 255))) * 255
    return thinned, dist


def cal_crosspoint(vessel):
    # Removing bifurcation points by using specially designed kernels
    # Can be optimized further! (not the best implementation)
    thinned1, dist = Skeleton(vessel, vessel)
    thh = thinned1.copy()
    thh = thh / 255
    kernel1 = np.array([[1, 1, 1], [1, 10, 1], [1, 1, 1]])

    th = convolve2d(thh, kernel1, mode="same")
    for u in range(th.shape[0]):
        for j in range(th.shape[1]):
            if th[u, j] >= 13.0:
                cv2.circle(vessel, (j, u), 2 * int(dist[u, j]), (0, 0, 0), -1)
    # thi = cv2.cvtColor(thi, cv2.COLOR_BGR2GRAY)
    return vessel


def AVclassifiation(out_path, PredAll1, PredAll2, VesselPredAll, DataSet=0, image_basename=''):
    """
    predAll1: predition results of artery
    predAll2: predition results of vein
    VesselPredAll: predition results of vessel
    DataSet: the length of dataset
    image_basename: the name of saved mask
    """

    ImgN = DataSet

    for ImgNumber in range(ImgN):

        height, width = PredAll1.shape[2:4]

        VesselProb = VesselPredAll[ImgNumber, 0, :, :]

        ArteryProb = PredAll1[ImgNumber, 0, :, :]
        VeinProb = PredAll2[ImgNumber, 0, :, :]

        VesselSeg = (VesselProb >= 0.1) & ((ArteryProb >0.2) | (VeinProb > 0.2))
        # VesselSeg = (VesselProb >= 0.5) & ((ArteryProb >= 0.5) | (VeinProb >= 0.5))
        crossSeg = (VesselProb >= 0.1) & ((ArteryProb >= 0.6) & (VeinProb >= 0.6))
        VesselSeg = binaryPostProcessing3(VesselSeg, removeArea=100, fillArea=20)

        vesselPixels = np.where(VesselSeg > 0)

        ArteryProb2 = np.zeros((height, width))
        VeinProb2 = np.zeros((height, width))
        crossProb2 = np.zeros((height, width))
        image_color = np.zeros((3, height, width), dtype=np.uint8)
        for i in range(len(vesselPixels[0])):
            row = vesselPixels[0][i]
            col = vesselPixels[1][i]
            probA = ArteryProb[row, col]
            probV = VeinProb[row, col]
            #probA,probV = softmax([probA,probV])
            ArteryProb2[row, col] = probA
            VeinProb2[row, col] = probV

        test_use_vessel = np.zeros((height, width), np.uint8)
        ArteryPred2 = ((ArteryProb2 >= 0.2) & (ArteryProb2 >= VeinProb2))
        VeinPred2 = ((VeinProb2 >= 0.2) & (VeinProb2 >= ArteryProb2))

        ArteryPred2 = binaryPostProcessing3(ArteryPred2, removeArea=100, fillArea=20)
        VeinPred2 = binaryPostProcessing3(VeinPred2, removeArea=100, fillArea=20)

        image_color[0, :, :] = ArteryPred2 * 255
        image_color[2, :, :] = VeinPred2 * 255
        image_color = image_color.transpose((1, 2, 0))

        #Image.fromarray(image_color).save(os.path.join(out_path, f'{image_basename[ImgNumber].split(".")[0]}_ori.png'))

        imgBin_vessel = ArteryPred2 + VeinPred2
        imgBin_vessel[imgBin_vessel[:, :] == 2] = 1
        test_use_vessel = imgBin_vessel.copy() * 255

        vessel = cal_crosspoint(test_use_vessel)

        contours_vessel, hierarchy_c = cv2.findContours(vessel, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

        # inter continuity
        for vessel_seg in range(len(contours_vessel)):
            C_vessel = np.zeros(vessel.shape, np.uint8)
            C_vessel = cv2.drawContours(C_vessel, contours_vessel, vessel_seg, (255, 255, 255), cv2.FILLED)
            cli = np.mean(VeinProb2[C_vessel == 255]) / np.mean(ArteryProb2[C_vessel == 255])
            if cli < 1:
                image_color[
                    (C_vessel[:, :] == 255) & (test_use_vessel[:, :] == 255)] = [255, 0, 0]
            else:
                image_color[
                    (C_vessel[:, :] == 255) & (test_use_vessel[:, :] == 255)] = [0, 0, 255]
        loop=0
        while loop<2:
            # out vein continuity
            vein = image_color[:, :, 2]
            contours_vein, hierarchy_b = cv2.findContours(vein, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

            vein_size = []
            for z in range(len(contours_vein)):
                vein_size.append(contours_vein[z].size)
            vein_size = np.sort(np.array(vein_size))
            # image_color_copy = np.uint8(image_color).copy()
            for vein_seg in range(len(contours_vein)):
                judge_number = min(np.mean(vein_size),500)
                # cv2.putText(image_color_copy, str(vein_seg), (int(contours_vein[vein_seg][0][0][0]), int(contours_vein[vein_seg][0][0][1])), 3, 1,
                #             color=(255, 0, 0), thickness=2)
                if contours_vein[vein_seg].size < judge_number:
                    C_vein = np.zeros(vessel.shape, np.uint8)
                    C_vein = cv2.drawContours(C_vein, contours_vein, vein_seg, (255, 255, 255), cv2.FILLED)
                    max_diameter = np.max(Skeleton(C_vein, C_vein)[1])

                    image_color_copy_vein = image_color[:, :, 2].copy()
                    image_color_copy_arter = image_color[:, :, 0].copy()
                    # a_ori = cv2.drawContours(a_ori, contours_b, k, (0, 0, 0), cv2.FILLED)
                    image_color_copy_vein = cv2.drawContours(image_color_copy_vein, contours_vein, vein_seg,
                                                             (0, 0, 0),
                                                             cv2.FILLED)
                    # image_color[(C_cross[:, :] == 255) & (image_color[:, :, 1] == 255)] = [255, 0, 0]
                    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (
                        4 * int(np.ceil(max_diameter)), 4 * int(np.ceil(max_diameter))))
                    C_vein_dilate = cv2.dilate(C_vein, kernel, iterations=1)
                    # cv2.imwrite(path_out_3, C_vein_dilate)
                    C_vein_dilate_judge = np.zeros(vessel.shape, np.uint8)
                    C_vein_dilate_judge[
                        (C_vein_dilate[:, :] == 255) & (image_color_copy_vein == 255)] = 1
                    C_arter_dilate_judge = np.zeros(vessel.shape, np.uint8)
                    C_arter_dilate_judge[
                        (C_vein_dilate[:, :] == 255) & (image_color_copy_arter == 255)] = 1
                    if (len(np.unique(C_vein_dilate_judge)) == 1) & (
                            len(np.unique(C_arter_dilate_judge)) != 1) & (np.mean(VeinProb2[C_vein == 255]) < 0.6):
                        image_color[
                            (C_vein[:, :] == 255) & (image_color[:, :, 2] == 255)] = [255, 0,
                                                                                      0]

            # out artery continuity
            arter = image_color[:, :, 0]
            contours_arter, hierarchy_a = cv2.findContours(arter, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
            arter_size = []
            for z in range(len(contours_arter)):
                arter_size.append(contours_arter[z].size)
            arter_size = np.sort(np.array(arter_size))
            for arter_seg in range(len(contours_arter)):
                judge_number = min(np.mean(arter_size),500)

                if contours_arter[arter_seg].size < judge_number:

                    C_arter = np.zeros(vessel.shape, np.uint8)
                    C_arter = cv2.drawContours(C_arter, contours_arter, arter_seg, (255, 255, 255), cv2.FILLED)
                    max_diameter = np.max(Skeleton(C_arter, test_use_vessel)[1])

                    image_color_copy_vein = image_color[:, :, 2].copy()
                    image_color_copy_arter = image_color[:, :, 0].copy()
                    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (
                        4 * int(np.ceil(max_diameter)), 4 * int(np.ceil(max_diameter))))
                    image_color_copy_arter = cv2.drawContours(image_color_copy_arter, contours_arter, arter_seg,
                                                              (0, 0, 0),
                                                              cv2.FILLED)
                    C_arter_dilate = cv2.dilate(C_arter, kernel, iterations=1)
                    # image_color[(C_cross[:, :] == 255) & (image_color[:, :, 1] == 255)] = [255, 0, 0]
                    C_arter_dilate_judge = np.zeros(arter.shape, np.uint8)
                    C_arter_dilate_judge[
                        (C_arter_dilate[:, :] == 255) & (image_color_copy_arter[:, :] == 255)] = 1
                    C_vein_dilate_judge = np.zeros(arter.shape, np.uint8)
                    C_vein_dilate_judge[
                        (C_arter_dilate[:, :] == 255) & (image_color_copy_vein[:, :] == 255)] = 1

                    if (len(np.unique(C_arter_dilate_judge)) == 1) & (
                            len(np.unique(C_vein_dilate_judge)) != 1) & (np.mean(ArteryProb2[C_arter == 255]) < 0.6):
                        image_color[
                            (C_arter[:, :] == 255) & (image_color[:, :, 0] == 255)] = [0,
                                                                                       0,
                                                                                       255]
            loop=loop+1

        # image_basename = os.path.basename(image_basename)
        # Image.fromarray(image_color).save(os.path.join(out_path, f'{image_basename.split(".")[0]}.png'))
        # Image.fromarray(np.uint8(VesselProb*255)).save(os.path.join(out_path, f'{image_basename.split(".")[0]}_vessel.png'))
    return image_color